
Copyright © 2012 Jorge Ramon

Copyright MiamiCoder.com Page 1

How to build a jQuery Mobile Application
A hands-on guide to mastering the essential elements of a jQuery Mobile application

Book Version: 1.1

Copyright MiamiCoder.com

All rights reserved

www.miamicoder.com

About The Book

Goals

How to Build a jQuery Mobile Application will guide you, step by step, through the process of

building a mobile application using jQuery Mobile. The book’s hands-on approach will allow you

to learn the following topics:

 The building blocks of a jQuery Mobile application.

 How to create a user interface with jQuery Mobile.

 How to render data using lists, and how to style list items.

 How to edit data using form elements.

 How to save application data on the device, across browser sessions.

 How to synchronize application data with a server.

Besides helping you learn jQuery Mobile in a short time, the book will give you great pointers,

which you can use when developing your own applications.

Here is a detailed view of what’s ahead of us:

http://www.miamicoder.com/

Copyright MiamiCoder.com Page 2

Table of Contents

About The Book .. 1

Goals ... 1

Table of Contents .. 2

About Warranties and Trademarks .. 4

Chapter 1: Introducing the Notes Application .. 4

What You Will Learn In this Book .. 4

The Development Approach ... 6

Features of the Notes App ... 6

Designing the Notes List ... 6

Designing the Note Editor..7

Where Are We? ... 9

Chapter 2: Creating the Notes List ... 9

What You Will Learn In This Chapter .. 9

The Application’s Directories and Files ...10

How jQuery Mobile Works ... 11

The Notes List jQuery Mobile Page .. 11

Defining the Controller Module ... 15

How To Execute Code after A jQuery Mobile Page Loads ... 17

Creating a jQuery Mobile List Programmatically .. 18

Where Are We? ... 20

Chapter 3: Retrieving and Rendering Cached Notes .. 21

What You Will Learn In This Chapter ... 21

Defining And Testing the Application’s Business Logic .. 21

Getting Ready to Use Jasmine .. 22

The dataContext Module ... 24

The Note Model ... 27

Copyright MiamiCoder.com Page 3

Retrieving Cached Notes from Local Storage ... 28

Testing With Data by Retrieving a List of Dummy Notes .. 31

Rendering Cached Notes ... 33

How to Style List Items ... 36

Grouping Notes By Date ... 39

Where Are We? ... 42

Chapter 4: Creating the Note Editor Page ... 43

What You Will Learn In This Chapter .. 43

Creating the Note Editor Page .. 44

Loading a Note in the Editor ... 46

Saving a Note ... 52

Getting Ready to Validate a Data Model .. 61

How to Create a Dialog With jQuery Mobile .. 63

Creating a Confirmation Dialog .. 65

Deleting a Note .. 68

Using a Custom Theme Swatch in jQuery Mobile .. 72

Where Are We? .. 75

Chapter 5: Synchronizing With the Server .. 76

What You Will Learn In This Chapter .. 76

How Synchronization Will Work .. 78

Creating a Tap Handler for the Sync Button ... 78

Changing jQuery Mobile’s Default Loading Message ... 79

Creating a Test for An Asynchronous Operation .. 80

Passing a Server URL to The dataContext Module ... 83

Beginning the Notes Synchronization... 84

Adding Synchronization Time Stamps to the Note Model ... 87

Parsing Synchronization Results Sent By the Server ... 91

Copyright MiamiCoder.com Page 4

Using an Icon to Indicate a Note’s Sync Status ... 95

The Server-Side Code, PHP Version ... 100

The Server-Side Code, C# Version ... 105

Where Are We? ... 109

We Made It! ... 109

Keep in Touch ... 109

About Warranties and Trademarks

The information in this book is distributed on an “as is” basis, without warranty. Although every

precaution has been taken in the preparation of this work, neither I nor my employers shall have

any liability to any person or entity with respect to any loss or damage caused or alleged to be

caused directly or indirectly by the information contained in this work.

Trademarked names may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, I use the names only in an editorial fashion and to the

benefit of the trademark owner, with no intention of infringement of the trademark.

Chapter 1: Introducing the Notes Application

What You Will Learn In this Book

In this book, you will learn how to create a jQuery Mobile application that allows its users to

take notes, store them on the device running the app, and synchronize them with a server. We

will call our app The Notes Application.

Copyright MiamiCoder.com Page 5

While building the Notes app we will dive into the following subjects:

 Building blocks of a jQuery Mobile application.

 Rendering data using list views.

 Editing data using form elements.

 Device-side data persistence across browser sessions.

 Synchronization of application data with a server.

 Navigation in a multi-view application.

 Behavior-driven development with the Jasmine Framework.

In this chapter, we are going to talk about the overall design of the application, define its

features, and design the user interface.

Copyright MiamiCoder.com Page 6

Let’s get started.

The Development Approach

We will build the application following the Model-View-Controller (MVC) pattern. We will write

Model and Controller logic using JavaScript modules and classes, and we will use jQuery Mobile

to create our Views.

We are going to follow a behavior-driven approach to develop the business logic of the

application. For each use case, we will first create a specification, and then we will implement

the specification in the application.

Features of the Notes App

The Notes application has a simple feature set. We want to give our customers the following

basic abilities:

 Create, edit, delete and view notes.

 Store notes on the mobile device running the app, across browser sessions.

 Synchronize notes with a server.

Designing the Notes List

The main view of the application will render the list of existing notes. We will call this view the

Notes List, and it will be the first view our users see when they launch the application.

We are going to build the Notes List view so it looks similar to this mock-up:

Copyright MiamiCoder.com Page 7

As the mock-up indicates, the view will consist of the following parts:

 A top toolbar containing the view’s Title and the New button. The new button will

connect with a second view, the Note Editor, which will allow our users to create new

notes.

 A list view that will render the existing notes on the device. A tap on any element of the

list will cause the selected note to be rendered in the Note Editor view.

 A bottom toolbar containing the Sync button. The Sync button will allow users to upload

the existing notes to the server.

Here is a more descriptive mock-up, which depicts each of the view’s parts and the html

elements with which we will build them:

Designing the Note Editor

Of course, we also need an interface for our users to create, edit, and delete notes. We will name

this view Note Editor, and it will look just like this mock-up:

Copyright MiamiCoder.com Page 8

The Note Editor view will consist of the following parts:

 A top toolbar containing the view’s Title, and the Home and Save buttons. A tap on the

Home button will cancel any changes made to the selected note, and trigger a transition

back to the Notes List view. A tap on the Save button will cause the changes to the

selected note to be saved, followed by a transition back to the Notes List.

 A form, containing fields for the note’s title and narrative.

 A bottom toolbar containing the Delete button. Tapping this button will activate a small

dialog that we will use to require confirmation from the user before deleting the note.

Here are each of the view’s parts and the html elements we will use to build them:

Copyright MiamiCoder.com Page 9

Where Are We?

In this chapter we talked about the book’s goals. We also established the overall design of the

Notes application, defined its features, and created low fidelity user interface mock-ups that will

help us build the app’s main views and associated business logic.

Let’s now move on to building the Notes List View.

Chapter 2: Creating the Notes List

What You Will Learn In This Chapter

In this chapter, we are going to create the Notes List page, the page that renders the list of notes

cached on the device. While building this page, we will become familiar with the following

subjects:

 How jQuery Mobile works.

 How to build a jQuery Mobile page.

 How to execute code after a jQuery Mobile page loads.

 How to build a jQuery Mobile list view programmatically.

 How to define a Controller module that will feed data to jQuery Mobile pages, and

coordinate their transitions.

Copyright MiamiCoder.com Page 10

The Application’s Directories and Files

Before we start writing code, let’s spend a couple of minutes talking about our application’s

directories.

We will create a main directory for the application, which we will name NotesApp. This

directory can be anywhere in your computer, as long as it is set up so it can be accessed from

your local web server. Under NotesApp we will create an app directory, where we will place the

business logic and presentation files; and a spec directory, where we will place our test suites.

At the same level of the NotesApp directory, we will create a Lib directory. Lib will contain

directories for each of the libraries our application will use.

The directories should look as depicted below:

Copyright MiamiCoder.com Page 11

If you are curious about the jasmine, jqm and jstorage directories, these are the containers

where we will place the Jasmine, jQuery Mobile and jStorage JavaScript frameworks. Don’t

worry about them for now. We will work on them later.

How jQuery Mobile Works

As its documentation clearly explains, jQuery Mobile is a unified user interface system with the

following characteristics:

 It works seamlessly across all popular mobile device platforms.

 It uses jQuery and jQuery UI as its foundations.

 It has a lightweight codebase built on progressive enhancement.

 It has a flexible and easily themeable design.

A factor that differentiates jQuery Mobile from other frameworks is that it targets a wide variety

of mobile browsers, 23 at the time of this writing. The reason this coverage is possible has to do

with the way jQuery Mobile works.

jQuery Mobile works by applying CSS and JavaScript enhancements to HTML pages built with

clean, semantic HTML. The usage of semantic HTML ensures compatibility with most web-

enabled devices.

The techniques applied by the Framework to this HTML, transform the semantic page into a

rich and interactive experience. We call these changes progressive enhancements, as they

are applied progressively to the page, taking advantage of the capabilities of the browser on the

web-enabled device.

The enhancements result in interactive pages, which provide a great user experience on the

latest mobile browsers, and degrade gracefully on less capable browsers, without losing their

intrinsic functionality.

In addition, the Framework provides support for screen readers and other assistive technologies

through a tight integration with the Web Accessibility Initiative - Accessible Rich Internet

Applications Suite (WAI-ARIA) technical specification.

The Notes List jQuery Mobile Page

In order to build the Notes List, we need to create the HTML document that will host the Notes

App.

Copyright MiamiCoder.com Page 12

jQuery Mobile allows us to build applications based on one or more HTML documents. The

amount of markup we will write for our app is so small that we will not need multiple

documents. The entire application’s markup will reside in a single HTML file.

We will use jQuery Mobile’s page template to create our app’s HTML file. Let’s create the

index.html file in our application’s directory, as depicted below:

We will add the following markup to the index.html file:

<html>
<head>
 <title></title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="../../lib/jqm/jquery.mobile-
1.3.0.min.css" rel="stylesheet" type="text/css" />
 <script src="../../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>

 <!--- Add controller module here --->

 <script src="../../Lib/jqm/jquery.mobile-
1.3.0.min.js" type="text/javascript"></script>
</head>
<body>
 <div data-role="page" id="notes-list-page" data-title="My Notes">
 <div data-role="header" data-position="fixed">
 <h1>
 My Notes</h1>
 <a href="#note-editor-page" class="ui-btn-right" data-theme="b" data-
icon="plus">New
 </div>
 <div data-role="content" id="notes-list-content">
 </div>
 <div data-role="footer" data-position="fixed" class="ui-bar">
 Sync
 </div>
 </div>
</body>
</html>

The head section of the file contains references to the jQuery and jQuery Mobile libraries. Now

is a good time to download them from the jQuery and jQuery Mobile websites, and place them in

the jqm directory:

Copyright MiamiCoder.com Page 13

In the head section of the index.html file we have also added a placeholder for the first

JavaScript module we will work on, the controller module.

Let’s shift our focus to the body section of the document, and take a minute to compare the code

in this section to the page’s mock-up, which we defined in Chapter 1:

They look similar, right?

As the markup indicates, we have created a single jQuery Mobile page with a header, content,

and footer sections. This will be the Notes List page, the main page of the application.

Copyright MiamiCoder.com Page 14

A jQuery Mobile page and an HTML page are not the same thing. An HTML page is generally a

physical document containing HTML markup. A jQuery Mobile page is a markup fragment that

you can easily identify by the use of the data-role=”page” attribute. An HTML document can

contain one or more jQuery Mobile pages.

In the jQuery Mobile page that represents the Notes List, the header bar is defined with the

data-role=”header” attribute, the content area with data-role=”content”, and the footer bar with

data-role=”footer”.

As the jQuery Mobile documentation explains, the Framework uses the attributes starting with

the data- prefix to transform basic markup into and enhanced and styled widget.

The header bar of the Notes List page already contains the New button, which will allow our

users to create a new note. The button is simply an anchor element that is automatically

enhanced by the Framework. As we defined it immediately after the title of the header bar (the

h1 element), the button will render to the right of the title.

Copyright MiamiCoder.com Page 15

<a href="#note-editor-page" class="ui-btn-right" data-theme="b" data-
icon="plus">New

We have decorated the button with the data-theme and data-icon attributes. We are using the

data-theme=”b” assignment to give the button a different color, making it the default button on

the page. The value for the data-icon attribute maps to one of the built-in icons that ship with

the Framework. You can find these icons in the Lib/jqm/images directory.

The value of the button’s href attribute is the id of the Note Editor page. Later, we will bind to

the tap event of the New button, and use the href to trigger a transition to the Note Editor page.

The content section of the Notes List page, a div adorned with the data-role=”content” attribute,

will host the list of cached notes:

<div data-role="content" id="notes-list-content">
</div>

In a few minutes, we will write code that inserts the cached notes list into this section.

The footer bar contains the Sync button, an anchor element that will allow our users to send the

updated notes to the server. We will bind to its tap event in order to trigger the notes

synchronization.

This is the entire HTML required for the Notes List page. We can now start working on the

JavaScript code that will render the notes cached on the device.

Defining the Controller Module

Our application will have a core that will control the behavior of the views. We will place this

core in a JavaScript module, the controller module.

The application’s only Controller (remember we’re using the Model-View-Controller pattern)

goes in a new file that we will name Controller.js. We will place this file in the app directory:

Back in the index.html file, we need to include the Controller’s file:

Copyright MiamiCoder.com Page 16

<!--- Add controller module here --->
<script src="app/Controller.js" type="text/javascript"></script>

In the Controller.js file, let’s define an empty controller module like so:

var Notes = Notes || {};

Notes.controller = (function () {

})();

We will also define an init function that will allow us to perform initialization code within the

Controller.

var Notes = Notes || {};

Notes.controller = (function () {

 var init = function () {

 };

 var public = {
 init: init
 };

 return public;

})();

We want to trigger the controller’s init function when jQuery Mobile starts to execute, this is
why we will bind to the mobileinit jQuery Mobile event in the controller.js file, right after the
controller’s definition:

var Notes = Notes || {};

Notes.controller = (function () {

 var init = function () {

 };

 var public = {
 init: init
 };

 return public;

})();

$(document).bind("mobileinit", function () {

Copyright MiamiCoder.com Page 17

 Notes.controller.init();
});

You would expect that the next step in the Controller’s init function would be to render the

cached notes. That is not wrong, but it would only work for rendering the notes upon application

initialization. We’re going to do something more useful. We’re going to use the jQuery Mobile’s

pagechange event to render the cached notes, not only when the application starts, but also

when the user transitions from the Note Editor page, which we haven’t created yet, to the Notes

List page.

How To Execute Code after A jQuery Mobile Page Loads

The pagechange event is triggered after the jQuery Mobile function changePage has finished

loading the page into the DOM and all page transition animations have completed. This is the

perfect moment for us to render the list of cached notes.

Let’s modify the controller module, binding to jQuery Mobile’s pagechange event like so:

var Notes = Notes || {};

Notes.controller = (function ($) {

 var notesListPageId = "notes-list-page";
 var notesListSelector = "#notes-list-content";

 var init = function () {

 var d = $(document);
 d.bind("pagechange", onPageChange);
 };

 var public = {
 init: init
 };

 return public;

})(jQuery);

$(document).bind("mobileinit", function () {
 Notes.controller.init();
});

The first change we have made in the controller module is the injection of the jQuery object at

invocation time. This will allow us to have a jQuery reference correctly scoped within the

module.

Copyright MiamiCoder.com Page 18

We have also added the notesListPageId and notesListSelector variables, which will allow us to

reference the Notes List page and its content area.

In the init function, we acquire a reference to the document object and then bind to the

pagechange event, defining an onPageChange function as the handler for the event:

var d = $(document);
d.bind("pagechange", onPageChange);

Now we can create onPageChange, right before init, as follows:

var onPageChange = function (event, data) {

 var toPageId = data.toPage.attr("id");

 switch (toPageId) {
 case notesListPageId:

 renderNotesList();
 break;
 }
};

This handler is relatively simple. It inspects the id attribute of the page we are transitioning to,

available through the data.toPage property defined by jQuery Mobile, and takes action based on

its value. If the id matches that of the Notes List page, the handler invokes a renderNotesList

private function, which we will define next.

Creating a jQuery Mobile List Programmatically

The first version of renderNotesList function, which we will add before onPageChange, will

simply render a few dummy notes to the Notes List page:

var renderNotesList = function () {

 var dummyNotesCount = 10,
 note,
 i;

 var view = $(notesListSelector);
 view.empty();

 var ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

 for (i = 0; i < dummyNotesCount; i += 1) {

 $(""

Copyright MiamiCoder.com Page 19

 + ""
 + "<div>Note title " + i + "</div>"
 + "<div class=\"list-item-narrative\">Note Narrative " + i + "</div>"
 + ""
 + "").appendTo(ul);
 }

 ul.listview();

};

There isn’t a lot going on in this function. We first use the view variable to store a reference to

the area where we will render the notes, and then remove any existing HTML elements with a

call to empty. Although not necessary when the application launches, we need this step in order

to refresh the list after a note is added, deleted or updated.

As you can see, we will use an unordered list to render the notes to the page. We are keeping a

reference to the list in the ul variable, appending a li element to it for each note we need to

render.

Each li element in turn contains a link to the Note Editor page, which specifies the id of the

rendered note through the noteId parameter of the query string. Inside this link, we have

defined a couple of div elements, which contain the note’s title and narrative respectively. We

have assigned each div a CSS class that will allow us to control its look. We will define these

classes in a few minutes.

The last step, ul.listview, calls jQuery Mobile’s listview plugin, which enhances the HTML list

with the styles and behaviors defined for lists. This is what gives the list its mobile-friendly look

and feel.

The most common way to generate a jQuery Mobile list view is through an unordered list,

decorated with the data-role=”listview” attribute. Many enhancements to HTML elements

occur when jQuery Mobile loads, before the document.ready event fires. However, we are

adding our list to the DOM long after the Framework is loaded, which means that we have to ask

jQuery Mobile to enhance the list. This is the purpose of the listview call.

At this point, we are ready to check how our list looks. Let’s fire our favorite WebKit browser or

emulator, and review the page. The emulator should render a page similar to this:

Copyright MiamiCoder.com Page 20

Where Are We?

In this chapter, we learned how jQuery Mobile does its magic. We did so while building the

Notes List page, which is the mobile page that will render the list of notes.

We also defined the controller module. This module will handle events generated in the

application’s views. Additionally, we learned how to create a jQuery Mobile list

programmatically.

The Notes List page we built in this chapter renders a set of dummy notes. Now we are ready to

feed real notes to this page, saved on the device, and retrieved by the next module we will build:

the dataContext module.

Copyright MiamiCoder.com Page 21

Chapter 3: Retrieving and Rendering Cached Notes

What You Will Learn In This Chapter

We just built the Notes List page. Along with this page, we created the controller module, which

is currently sending dummy notes to the page. It is time now to teach the app how to retrieve

and render notes saved in HTML5 local storage.

Here’s what we will learn in this chapter:

 How to build an application module to take care of data access operations.

 How to define and test the data access behavior of the application.

 How to retrieve data from HTML5’s local storage.

 How to style list items in a jQuery Mobile list view.

Defining And Testing the Application’s Business Logic

An important advantage of building the application in a modular fashion is that it helps us

define and test the business logic independently of the presentation layer. To work on the

business logic, we will follow these simple steps:

1. Define each application behavior using specifications.

2. Implement the behavior.

3. Test and confirm the behavior meets the specifications.

When it comes to testing, we could roll out our own testing Framework, or use one of the great

frameworks that already exist. As this is not a book on how to build a Testing Framework, we

will just pick the Jasmine Framework (https://github.com/pivotal/jasmine/wiki) and use it to

test our app.

Jasmine is a Framework that allows us to test JavaScript code in a behavior-driven manner. This

means that with Jasmine we can write tests in a natural language that describes the purpose and

benefit of the code under test. This makes it easy for you as developer, and other stakeholders, to

focus on the reason and purpose of the code rather than its technical details.

This example of a test will help you understand how Jasmine works:

describe("Notes functions", function () {

Copyright MiamiCoder.com Page 22

 it("Should return a NoteModel instance", function () {

 var note = Notes.app.createNote();

 expect(note instanceof Notes.model.NoteModel).toBeTruthy();
 });
});

We are using various Jasmine features in this example. One is the function describe, which we

use to create a container – “Suite” in Jasmine parlance - for our specifications.

The concept of a specification, or spec, is implemented with the function it. When we call it, we

pass a string describing the specification, as well as a function that defines a test for the spec. In

the example, we are expressing that the code under test should be able to create and return a

NoteModel instance.

The third feature we are using is the expect function, which defines an expectation about the

behavior of the application. In order to express what result will make the test pass, we chain an

expectation matcher to the expect call. In the example, we use the toBeThruthy matcher to

express that our test will pass if the results are true.

Within the it function, we will generally write the code needed to set up the test, as well as one or

more calls to expect, which will define the expectations.

Getting Ready to Use Jasmine

Let’s download Jasmine (http://pivotal.github.com/jasmine/), and place its files in the

Lib/jasmine directory:

Now, we will create a source file for the Jasmine test suites. We will name this file AppSpec.js,

and place it in the spec directory as depicted below:

Copyright MiamiCoder.com Page 23

Finally, let’s create the specrunner.html. We will use this file to run our Jasmine test suites. The

file is included in the Jasmine download, and we will need to modify it so it contains references

to all the libraries used by the modules under test.

We will place specrunner.html in the NotesApp directory:

Here’s its source:

<html>
<head>
 <title>Jasmine Test Runner</title>
 <!-- Libraries -->
 <script src="../lib/jqm/jquery- 1.7.1.min.js" type="text/javascript"></script>

 <!-- Jasmine -->
 <link href="../lib/jasmine/jasmine.css" rel="stylesheet" type="text/css" />
 <script src="../lib/jasmine/jasmine.js" type="text/javascript"></script>
 <script src="../lib/jasmine/jasmine-html.js" type="text/javascript"></script>
 <!-- App -->
 <!-- Modules under test -->
 <!-- Spec -->
 <script src="spec/AppSpec.js" type="text/javascript"></script>
</head>
<body>
 <script type="text/javascript">

 jasmine.getEnv().addReporter(new jasmine.TrivialReporter());

 jasmine.getEnv().execute();

 </script>
</body>
</html>

Copyright MiamiCoder.com Page 24

The file contains references to the Jasmine Framework, along with a placeholder for the

modules we will test. We have also added an entry for the AppSpec.js specifications file.

Now we are ready to start building the business logic of the application.

The dataContext Module

The dataContext module will contain the business logic of the application. As we have discussed,

to build this module, we will first define the specification for a given feature in the specifications

file, then add the feature to the module, and last, confirm that feature meets the specification.

We will define the module in the DataContext.js file, which goes in the app directory:

In order to use the dataContext module, the application’s namespace must exist. This is the first

specification we will create in the AppSpec.js file:

describe("Data context tests", function () {

 it("App's namespace exists", function () {
 expect(Notes).toBeDefined();
 });
});

The interesting part of this spec is how we use the toBeDefined expectation matcher to assert

that the Notes namespace exists.

Let’s open the specrunner.html file in our favorite browser and examine the output of the test.

The results should look similar to these:

Copyright MiamiCoder.com Page 25

Our expectation of a defined application namespace just failed. This is correct, because we

haven’t defined the namespace yet.

Let’s define the Notes namespace in the DataContext.js file like so:

var Notes = Notes || {};

We also need to include DataContext.js in the head section of the specrunner.html file:

<!-- Modules under test -->
<script src="app/DataContext.js" type="text/javascript"></script>

If we run the test now, it should pass:

This is a simple test, but good enough for you to see the rhythm that we want to establish here:

define behavior, test, implement behavior, and test again.

We have a similar expectation with respect to the dataContext module, which we can express

with a second it function in the AppSpec.js file:

it("dataContext module exists", function () {
 expect(Notes.dataContext).toBeDefined();
});

After reloading the specrunner.html file, we will see results similar to these:

Let’s satisfy the expectation by defining an empty dataContext module in the DataContext.js file:

Notes.dataContext = (function () {

Copyright MiamiCoder.com Page 26

 return false;
})();

Now the test should pass:

Moving on to more interesting behaviors, we want to define the ability to render the list of notes

cached on the device. This means that the dataContext module must have the ability to pass a

list of notes to the presentation layer.

We will define this behavior with a couple of Jasmine specifications. The first specification looks

like this:

it("Returns notes Array", function () {

 var notesList = Notes.dataContext.getNotesList();

 expect(notesList instanceof Array).toBeTruthy();
});

Here we are defining the expectation that the dataContext module has a getNotesList function,

which returns an instance of the Array class.

As we still have not defined this function, if we refresh specrunner.html in the browser, the test

should fail:

Copyright MiamiCoder.com Page 27

We will fix this by adding the getNotesList function to the dataContext module:

Notes.dataContext = (function () {

 var notesList = [];

 var getNotesList = function () {
 return notesList;
 };

 var public = {
 getNotesList: getNotesList
 };

 return public;

})();

Refreshing specrunner.html should yield an all-green test:

We now have a dataContext module with a getNotesList public function that returns an empty

array. However, our ultimate goal is to retrieve the notes from the browser’s local storage. To

accomplish this we will need a class that represents a note.

The Note Model

Let’s create the NoteModel.js file in the app folder, and add the following definition for the

NoteModel class:

var Notes = Notes || {};

Notes.NoteModel = function(config) {
 this.id = config.id;
 this.dateCreated = config.dateCreated;
 this.title = config.title;
 this.narrative = config.narrative;
};

Copyright MiamiCoder.com Page 28

This construct should look familiar to you. The NoteModel is a class that represents a note.

Every time we need to move a note’s data around, we will use an instance of this class. What we

will cache on the device is a serialized array of NoteModel instances.

We also need to include a reference to the NoteModel.js file in specrunner.html:

<!—Modules under test -->
<script src="app/DataContext.js" type="text/javascript"></script>
<script src="app/NoteModel.js" type="text/javascript"></script>

Retrieving Cached Notes from Local Storage

We are going to use HTML5’s localStorage API to store notes across browser sessions. Local

storage is based on keys and values, where the keys and values are strings. As we will cache an

array of NoteModel instances, we will need a serialization mechanism to convert the array of

notes to a string that will be saved in local storage. Similarly, we will need a mechanism to

convert the serialized notes into an array of NoteModel instances when retrieving the cached

notes.

We could write all the serialization and deserialization code we need. However, to simplify this

tutorial, we will use an abstraction layer on top of the localStorage API. The layer that takes care

of these services will be provided by the jStorage plugin (http://www.jstorage.info/).

The jStorage plugin allows us to cache numbers, strings and objects in local storage. We are

going to place the jStorage plugin in the Lib/jstorage directory like so:

The specrunner.html file should reference the plugin like so:

<!-- Libraries -->
<script src="../../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>
<script src="../../lib/jstorage/jstorage.min.js" type="text/javascript"></script>

In the dataContext module, we will define the loadNotesFromLocalStorage private function,

which will retrieve the cached notes from local storage:

Copyright MiamiCoder.com Page 29

var loadNotesFromLocalStorage = function () {

 var storedNotes = $.jStorage.get(notesListStorageKey);

 if (storedNotes !== null) {
 notesList = storedNotes;
 }
};

Let’s also declare the notesListStorageKey variable right after the notesList definition:

var notesList = [],
 notesListStorageKey;

The loadNotesFromLocalStorage function simply uses the jStorage plugin to retrieve the list of

cached notes from local storage. The plugin takes care of converting the list of notes from a

String instance to an Array instance, which is what we need.

When the application runs, the cached notes will be immediately presented to the user. This

means that the loadNotesFromLocalStorage is one of the first functions that will be called in the

app.

To invoke this function when the application starts, as well as execute any other initialization

code needed by the app, we will use a helper function, which we will name init.

Let’s work on the init function by first creating a spec for it in the AppSpec.js file:

it("Has init function", function () {
 expect(Notes.dataContext.init).toBeDefined();
});

As init is missing, the test should fail:

We are going to add the init public function to the DataContext.js file:

Copyright MiamiCoder.com Page 30

Notes.dataContext = (function () {

 var notesList = [],
 notesListStorageKey;

 var getNotesList = function () {
 return notesList;
 };

 var loadNotesFromLocalStorage = function () {

 var storedNotes = $.jStorage.get(notesListStorageKey);

 if (storedNotes !== null) {
 notesList = storedNotes;
 }
 };

 var init = function (storageKey) {
 notesListStorageKey = storageKey;
 loadNotesFromLocalStorage();
 };

 var public = {
 init: init,
 getNotesList: getNotesList
 };

 return public;

})();

Note how we are using init to initialize the notesListStorageKey variable:

var init = function (storageKey) {
 notesListStorageKey = storageKey;
 loadNotesFromLocalStorage();
};

Passing a value for the notesListStorageKey variable through the init function gives us the

ability to use different local storage keys – one when dataContext is under test, and one when it

is used by the controller module.

After this step, we can go back to the test, which this time should be green:

Copyright MiamiCoder.com Page 31

Testing With Data by Retrieving a List of Dummy Notes

It would be nice if we could also test by saving a few dummy notes to local storage, and have the

dataContext module retrieve them for us. This is not difficult to accomplish. Let’s first create a

testHelper module, which we will place in a new TestHelper.js file, in the spec folder:

The specrunner.html file needs to reference this module as well:

<!-- Modules under test -->
<script src="app/DataContext.js" type="text/javascript"></script>
<script src="app/NoteModel.js" type="text/javascript"></script>
<!-- Test Helper -->
<script src="spec/TestHelper.js" type="text/javascript"></script>
<!-- Spec -->
<script src="spec/AppSpec.js" type="text/javascript"></script>

The testHelper module will allow us to save a few dummy notes into local storage:

Notes.testHelper = (function () {

 var createDummyNotes = function (notesListStorageKey) {

 var notesCount = 10;
 var notes = [];

 for (var i = 0; i < notesCount; i++) {

Copyright MiamiCoder.com Page 32

 var config = {};
 var dateCreated = new Date();
 config.id = i.toString();
 config.title = "Title " + i;
 config.narrative = "Narrative " + i;
 config.dateCreated = dateCreated;

 var note = new Notes.NoteModel(config);

 notes.push(note);
 }

 $.jStorage.set(notesListStorageKey, notes);
 };

 var pub = {
 createDummyNotes: createDummyNotes
 };

 return pub;

})();

The notes created by the helper are saved to local storage through the jStorage plugin. Back in

the AppSpec.js file, let’s first define the storage key we will use for testing purposes. We will

declare the key at the top of the module, before the specs are defined:

var notesListStorageKey = "Notes.NotesListTest";

Then, we can define a spec that will confirm that we can load the dummy notes:

it("Returns dummy notes saved in local storage", function () {

 Notes.testHelper.createDummyNotes(notesListStorageKey);
 // Load dummy notes from localstorage.
 Notes.dataContext.init(notesListStorageKey);

 var notesList = Notes.dataContext.getNotesList();

 expect(notesList.length > 0).toBeTruthy();

 for (var i = 0; i < notesList.length; i+=1) {
 expect(notesList[i].id).toBeTruthy();
 }
});

This spec first uses the testHelper’s createDummyNotes function to place a few notes in local

storage. Then, it invokes the data context’s init function, which in turn calls the

Copyright MiamiCoder.com Page 33

loadNotesFromLocalStorage private function. Next, the spec retrieves the notes list via a call to

the dataContext’s getNotesList function. The expectation is simply that the notes list is not

empty.

We could be more thorough and compare each of the retrieved notes to the ones we saved,

making sure that the data did not change. I will leave this exercise as homework for you.

How about refreshing the specrunner.html file to check the test’s output? We should see all

green:

Rendering Cached Notes

We have quickly moved from the controller module, where we fed the Notes List page a list of

dummy notes, to the dataContext module, where we have added the ability to retrieve notes

saved in the mobile browser’s local storage.

It is time now to have the controller module request the list of notes from the dataContext

module. The controller will then feed this list to the Notes List page.

How do we go about this? Well, the first step we need to take is to reference the jStorage plugin,

as well as the NoteModel.js, DataContext.js and TestHelper.js files, in the index.html file:

<!-- Libraries -->
<script src="../../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>
<script src="../../lib/jstorage/jstorage.min.js" type="text/javascript"></script>
<!-- App -->
<script src="app/NoteModel.js" type="text/javascript"></script>
<script src="app/DataContext.js" type="text/javascript"></script>
<script src="app/Controller.js" type="text/javascript"></script>
<script src="spec/TestHelper.js" type="text/javascript"></script>

Copyright MiamiCoder.com Page 34

Next, we will modify the mobileinit event handler in the Controller.js file so it invokes the

testHelper module’s createDummyNotes function, which will give us a few test notes:

$(document).bind("mobileinit", function () {

 Notes.testHelper.createDummyNotes("Notes.NotesList");
 Notes.controller.init();
});

Note that we are using a different storage key here. Now we have two keys - one used for testing

purposes, and one used by the application.

We also need to modify the controller so it is aware of the dataContext module. We will use a

technique with which we are already familiar – dependency injection. Let’s modify the

controller’s definition so it takes the dataContext instance as an argument:

Notes.controller = (function ($, dataContext) {

 // Implementation omitted for brevity.

})(jQuery, Notes.dataContext);

Now we are injecting a reference to the dataContext into the controller. Let’s also make sure

that the controller calls the dataContext’s init function by inserting a line within the controller’s

own init function. We need this step because we want the dataContext module to load the notes

saved in local storage when the controller is initialized:

var init = function () {

 dataContext.init(appStorageKey);
 var d = $(document);
 d.bind("pagechange", onPageChange);
};

We also need to declare the appStorageKey variable at the top of the controller module:

var appStorageKey = "Notes.NotesList";

What are we missing? Well, we need to revise the renderNotesList function in the controller

module. This function should now use the dataContext module to retrieve the notes from local

storage. Let’s modify the function like so:

var renderNotesList = function () {

Copyright MiamiCoder.com Page 35

 var notesList = dataContext.getNotesList();
 var view = $(notesListSelector);

 view.empty();

 var liArray = [],
 notesCount,
 note,
 i,
 ul,
 liHtml;

 notesCount = notesList.length;
 ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

 for (i = 0; i < notesCount; i += 1) {

 note = notesList[i];

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + "<div>" + note.title + "</div>"
 + "<div>" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);

 }

 var listItems = liArray.join("");
 $(listItems).appendTo(ul);

 ul.listview();
};

The important change in this function is the addition of the line where we use the dataContext

module to load the notes saved in local storage:

var notesList = dataContext.getNotesList();

After this step, we populate the jQuery Mobile list view by iterating through the array of notes.

Let’s inspect the results of our work. Open the index.html file in your favorite emulator or

WebKit browser. The page should look like this:

Copyright MiamiCoder.com Page 36

We have accomplished an important project goal. At this point, the Notes List page is rendering

notes retrieved from local storage. However, we still need to take care of two details that will

greatly enhance the usability of this page. One is the formatting of the list items, and the other is

grouping the notes by date.

How to Style List Items

Formatting the list items is a simple task. We will use a couple of css classes to define the look of

the list items. Let’s add the css directory to the application, and create an app.css file in it:

Copyright MiamiCoder.com Page 37

In the app.css file, we are going to define the list-item-title and list-item-narrative classes like

so:

.list-item-title
{
 overflow: hidden;
 text-overflow: ellipsis;
}
.list-item-narrative
{
 color: #666666;
 font-weight: normal;
 overflow: hidden;
 text-overflow: ellipsis;
 min-height: 19px;
}

We also need to make sure the index.html file includes the app.css file:

<!-- Styles -->
<link href="css/app.css" rel="stylesheet" type="text/css" />
<!-- Libraries -->
<script src="../../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>

Now we need a small modification to the renderNotesList function in the controller module so it
uses these styles when building the notes list:

var renderNotesList = function () {

 var notesList = dataContext.getNotesList();
 var view = $(notesListSelector);

 view.empty();

 var liArray = [],
 notesCount,
 note,
 i,
 ul,
 liHtml;

 notesCount = notesList.length;
 ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

Copyright MiamiCoder.com Page 38

 for (i = 0; i < notesCount; i += 1) {

 note = notesList[i];

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);

 }

 var listItems = liArray.join("");
 $(listItems).appendTo(ul);

 ul.listview();
};

Notice how the div elements that contain the note’s title and narrative are decorated with the

styles we just created. Back in the emulator, the page should look like this:

Copyright MiamiCoder.com Page 39

Grouping Notes By Date

Grouping the notes by date is going to make it easier for the users of our app to find their notes.

To accomplish this, we are going to use a jQuery Mobile feature that allows us to group list items

– List dividers.

We can create a list divider by decorating a list item with the data-role=”list-divider” attribute.

This will change the style of the item, differentiating it from the rest of the items in the list.

Copyright MiamiCoder.com Page 40

The trick to adding the dividers to the list lies on inspecting the creation date of each note, and

creating a divider for each new day. Let’s revisit the renderNotesList function in the controller

module, and add the code that creates the dividers:

var renderNotesList = function () {

 var notesList = dataContext.getNotesList();
 var view = $(notesListSelector);

 view.empty();

 var liArray = [],
 notesCount,
 note,
 i,
 ul,
 liHtml,
 dateGroup,
 noteDate;

 notesCount = notesList.length;
 ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

 for (i = 0; i < notesCount; i += 1) {

 note = notesList[i];

 noteDate = (new Date(note.dateCreated)).toDateString();

 if (dateGroup !== noteDate) {
 liArray.push("<li data-role=\"list-divider\">" + noteDate + "");
 dateGroup = noteDate;

Copyright MiamiCoder.com Page 41

 }

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);

 }

 var listItems = liArray.join("");
 $(listItems).appendTo(ul);

 ul.listview();
};

We have introduced the noteDate and dateGoup variables. They will help us keep track of the

days the notes were created. The noteDate value is the day the current note was created. The

dateGroup value is the group to which the current note belongs.

Inside the loop that creates the list items, we first grab the note’s creation day:

noteDate = (new Date(note.dateCreated)).toDateString();

Then, we compare the day to the current group. If they are different, we add a list divider to the

list, and update the current group with the value of the current note’s creation day:

if (dateGroup !== noteDate) {
 liArray.push("<li data-role=\"list-divider\">" + noteDate + "");
 dateGroup = noteDate;
}

This is all it takes to get the groups in place. Let’s check it out on the emulator. Refreshing the

page should produce a result similar to this:

Copyright MiamiCoder.com Page 42

Where Are We?

In this chapter, we learned how to retrieve data from HTML5’s local storage. We used this

knowledge to feed data to the Notes List page.

We also started building the dataContext module, which is in charge of the data access

operations in the application. We are following a behavior-driven approach while building this

module, first defining expectations for the behavior, and then adding features to the module in

order to fulfill these expectations.

On the user interface side, we learned how to modify the look and feel of jQuery Mobile list

views, changing their styles, and grouping items.

Copyright MiamiCoder.com Page 43

We have reached an important milestone. At this point, the application is able to present a list of

cached notes upon launch. Our next steps will take us into the realm of form elements, as we are

about to start working on the Note Editor page.

Chapter 4: Creating the Note Editor Page

What You Will Learn In This Chapter

The Note Editor page is very important in the application. This page will let our users create,

edit and delete notes.

Copyright MiamiCoder.com Page 44

In this chapter, we are going to build the Note Editor page. While doing so, we will cover the

following subjects:

 How to create a jQuery Mobile form.

 How to pass data from a jQuery Mobile list view to a form.

 How to load data into the form.

 How to save data to HTML5’s local storage.

 How to create jQuery Mobile dialogs.

 How to create a custom jQuery Mobile theme swatch.

Creating the Note Editor Page

Similar to the Notes List Page, The Note Editor Page is a div element with the data-role=”page”

attribute. We will add this div to the index.html file like so:

<!--Note Editor page-->
<div data-role="page" id="note-editor-page" data-title="Edit Note">
 <div data-role="header" data-position="fixed">
 Cancel
 <h1>
 Edit Note</h1>
 Save
 </div>
 <div data-role="content">
 <form action="" method="post" id="note-editor-form">
 <label for="note-title-editor">
 Title:</label>
 <input type="text" name="note-title-editor" id="note-title-editor" value="" />
 <label for="note-narrative-editor">
 Narrative:</label>
 <textarea name="note-narrative-editor" id="note-narrative-editor"></textarea>
 </form>
 </div>
 <div data-role="footer" data-position="fixed" class="ui-bar">
 <a id="delete-note-button" data-icon="delete" data-transition="slideup" data-
rel="dialog">Delete
 </div>
</div>

This page consists of a header area with the Save and Cancel buttons, a form with the elements

that allow us to edit a note, and a footer that hosts the Delete button.

Copyright MiamiCoder.com Page 45

As you can see, jQuery Mobile has taken care of nicely styling and laying out the form elements.

We will give the Save and Delete button special treatment, binding to their tap events in order to

trigger the routines that save or delete the note loaded in the Note Editor page.

Copyright MiamiCoder.com Page 46

The role of the Cancel button is to take us back to the Notes List page. The data-rel=back

attribute causes taps on this button to go back one history entry and ignore the button’s href.

However, we still need the href to point to the #notes-list-page bookmark so the button still

works in browsers where jQuery Mobile provides a basic, non-enhanced HTML experience.

Loading a Note in the Editor

Let us take a moment to think about what needs to happen in order to load a note into the

editor. For existing notes, when the user taps the li element representing a note in the Notes List

page, we will perform the following steps:

1. Lookup the note in the notesList array, based on the note’s id contained in the li

element’s link.

2. Set the values of the title and narrative form elements in the Note Editor page to those of

the selected note’s title and narrative.

3. Make the Note Editor page active.

For new notes, when the user taps the New button in the Notes List page, we will perform these

steps:

1. Reset the values of the title and narrative form elements in the Note Editor page.

2. Make the Note Editor page active.

To load a note, the first thing we need in our controller module is a reference to the Note Editor.

Let’s go back to the top of the controller module and define a selector for the Note Editor page:

var noteEditorPageId = "note-editor-page";

Next, we need to return to the onPageChange function and handle the case when we are

switching to the editor page:

var onPageChange = function (event, data) {

 var toPageId = data.toPage.attr("id");
 var fromPageId = null;

 if (data.options.fromPage) {
 fromPageId = data.options.fromPage.attr("id");
 }

 switch (toPageId) {

 case notesListPageId:

Copyright MiamiCoder.com Page 47

 renderNotesList();
 break;

 case noteEditorPageId:

 if (fromPageId === notesListPageId) {
 renderSelectedNote(data);
 }
 break;
 }
};

The handler is a little bit more complex now. We added the fromPageId variable, which will

store the id of the page from which we’re navigating. We will call this page source page from

now on. The page we’re navigating to will be the target page.

The value of fromPageId will help us determine if we need to load a note into the editor:

if (fromPageId === notesListPageId) {
 renderSelectedNote(data);
}

If the source page is the Notes List, we load the note by calling the renderSelectedNote function,

which we will implement in a minute.

Note that we added the check for the fromPage parameter because the pagechange event is also

triggered after the application is launched, when there isn’t a source page yet. It doesn’t make

sense to acquire the id of the source page when the source page itself doesn’t exist:

if (data.options.fromPage) {
 fromPageId = data.options.fromPage.attr("id");
}

Before implementing renderSelectedNote, let’s jump to the top of the controller module and

create references to the title and narrative form elements:

var noteTitleEditorSel = "[name=note-title-editor]",
 noteNarrativeEditorSel = "[name=note-narrative-editor]";

The renderSelectedNote will take care of loading the selected note into the editor. Here’s the

implementation of the function:

var renderSelectedNote = function (data) {

 var u = $.mobile.path.parseUrl(data.options.fromPage.context.URL);

Copyright MiamiCoder.com Page 48

 var re = "^#" + noteEditorPageId;

 if (u.hash.search(re) !== -1) {

 var queryStringObj = queryStringToObject(data.options.queryString);

 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);

 var noteId = queryStringObj["noteId"];

 if (typeof noteId !== "undefined") {

 // We're editing an existing note. Load the note’s properties in the
editor.

 } else {
 // We're creating a note. Reset the fields.

 }

 titleEditor.focus();
 }
};

The renderSelectedNote function takes advantage of the fact that, in the renderNotesList

function, we’re passing the selected note’s id in the query string of the list item’s link:

liArray.push(""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id +
"\" href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative +
"</div>"
 + ""
 + "");

Our first goal inside renderSelectedNote is to inspect the hash of the source page’s URL, to make

sure the source page is the Notes List page. We do this using a regular expression search:

var u = $.mobile.path.parseUrl(data.options.fromPage.context.URL);
var re = "^#" + noteEditorPageId;

if (u.hash.search(re) !== -1) {

 // Code omitted for brevity...
}

To acquire the URL’s hash, we use the $.mobile.path.parseUrl function, which parses a URL

into an object that facilitates accessing the URL’s components. Once we’re certain the source

Copyright MiamiCoder.com Page 49

page is the Notes List, we proceed to create an object containing the query string parameters

passed from the source page. We use the queryStringToObject helper function for this task.

Let’s add it to the controller module:

var queryStringToObject = function (queryString) {

 var queryStringObj = {};
 var e;
 var a = /\+/g; // Replace + symbol with a space
 var r = /([^&;=]+)=?([^&;]*)/g;
 var d = function (s) { return decodeURIComponent(s.replace(a, " ")); };

 e = r.exec(queryString);
 while (e) {
 queryStringObj[d(e[1])] = d(e[2]);
 e = r.exec(queryString);

 }

 return queryStringObj;
};

The queryStringToObject function takes the value of the data.options.queryString property as a

parameter:

var queryStringObj = queryStringToObject(data.options.queryString);

The data.options object does not have a native queryString property. However, we can create it

if we find a point in time, before the page transition occurs, where we can acquire the value of

the query string.

It turns out that this is possible if we define a handler for jQuery Mobile’s pagebeforechange

event. Let’s return to our init function and add the following line:

d.bind("pagebeforechange", onPageBeforeChange);

Now we can define onPageBeforeChange like so:

var onPageBeforeChange = function (event, data) {

 if (typeof data.toPage === "string") {

 var url = $.mobile.path.parseUrl(data.toPage);

 if ($.mobile.path.isEmbeddedPage(url)) {

Copyright MiamiCoder.com Page 50

 data.options.queryString = $.mobile.path.parseUrl(url.hash.replace(/^#/,
"")).search.replace("?", "");
 }
 }
};

Pay attention to the following line:

data.options.queryString = $.mobile.path.parseUrl(url.hash.replace(/^#/,
"")).search.replace("?", "");

Here we use $.mobile.path.parseUrl to acquire the query string and add it to the data.options

object. As the onPageBeforeChange handler is invoked before the onPageChange handler,

we’ve found the right time to inject the query string defined in the source page into the events

chain, and propagate it to the target pages where it can be used.

Back in renderSelectedNote, we can finally take care of loading the selected note, or resetting

the title and narrative fields, like so:

var renderSelectedNote = function (data) {

 var u = $.mobile.path.parseUrl(data.options.fromPage.context.URL);
 var re = "^#" + noteEditorPageId;

 if (u.hash.search(re) !== -1) {

 var queryStringObj = queryStringToObject(data.options.queryString);

 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);

 var noteId = queryStringObj["noteId"];

 if (typeof noteId !== "undefined") {

 // We're editing an existing note. Load the note’s properties in the
editor.
 var notesList = dataContext.getNotesList();
 var notesCount = notesList.length;
 var note;

 for (var i = 0; i < notesCount; i++) {

 note = notesList[i];

 if (noteId === note.id) {
 currentNote = note;
 titleEditor.val(currentNote.title);
 narrativeEditor.val(currentNote.narrative);
 }

Copyright MiamiCoder.com Page 51

 }
 } else {
 // We're creating a note. Reset the fields.
 titleEditor.val("");
 narrativeEditor.val("");
 }

 titleEditor.focus();
 }
};

Observe how we’re keeping a reference to the selected note in the currentNote variable. This will

later allow us to save or delete the note without having to perform a lookup on the notesList

array.

That is what it takes to load a note. Let’s make sure things are working as expected. Fire up your

favorite WebKit browser or emulator, and confirm that tapping a note in the Notes List page

loads the note into the Note Editor page:

Copyright MiamiCoder.com Page 52

Similarly, tapping the New button should reset the editor’s fields.

Saving a Note

The Save Note workflow is initiated when a user taps the Save button. The controller module

needs to define a handler for the button’s tap event. We will use this handler to invoke a

saveNote function that we will create in the dataContext module. Let’s work on the tap handler

first.

We need a reference to the Save button, which we can create at the top of the controller module

like so:

var saveNoteButtonSel = "#save-note-button";

Copyright MiamiCoder.com Page 53

Next, we need to define a tap handler for the button in the controller’s init function:

var init = function () {

 dataContext.init("Notes.NotesList");

 var d = $(document);
 d.bind("pagebeforechange", onPageBeforeChange);
 d.bind("pagechange", onPageChange);
 d.delegate(saveNoteButtonSel, "tap", onSaveNoteButtonTapped);
};

Now we can implement onSaveButtonTapped like so:

var onSaveNoteButtonTapped = function () {

 // Validate note.
 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);
 var tempNote = dataContext.createBlankNote();

 tempNote.title = titleEditor.val();
 tempNote.narrative = narrativeEditor.val();

 if (tempNote.isValid()) {

 if (null !== currentNote) {

 currentNote.title = tempNote.title;
 currentNote.narrative = tempNote.narrative;
 } else {

 currentNote = tempNote;
 }

 dataContext.saveNote(currentNote);

 returnToNotesListPage();

 } else {
 // TODO: Inform the user the note is invalid.
 }
};

The first interesting thing that happens in this function is the creation of a temporary note,

invoking a dataContext function:

var tempNote = dataContext.createBlankNote();

Copyright MiamiCoder.com Page 54

The createBlankNote function does not exist in the dataContext module yet. Let’s go ahead and

define a test for it in the AppSpec.js file:

it("Returns a blank note", function () {

 var blankNote = Notes.dataContext.createBlankNote();
 expect(blankNote.title.length === 0).toBeTruthy();
 expect(blankNote.narrative.length === 0).toBeTruthy();
});

The test will not pass, as we need to add createBlankNote to the dataContext:

var createBlankNote = function () {

 var dateCreated = new Date();
 var id = dateCreated.getTime().toString() + (getRandomInt(0, 100)).toString();
 var noteModel = new Notes.NoteModel({
 id: id,
 dateCreated: dateCreated,
 title: "",
 narrative: ""
 });

 return noteModel;
};

We also need to add the function to the module’s public interface:

var public = {
 init: init,
 getNotesList: getNotesList,
 createBlankNote: createBlankNote
};

If you examine createBlankNote, you will notice that it calls a getRandomInt helper function in

order to create the id of the new note. As we haven’t defined getRandomInt yet, if we run the

Jasmine spec, the results should indicate that the helper function is missing:

Copyright MiamiCoder.com Page 55

Let’s add getRandomInt to the dataContext module like so:

var getRandomInt = function(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
};

After this modification, the test should pass:

Back in the controller’s onSaveNoteButtonTapped handler, the second interesting thing is the

call to the NoteModel’s isValid function:

if (tempNote.isValid()) {

 if (null !== currentNote) {

Copyright MiamiCoder.com Page 56

 currentNote.title = tempNote.title;
 currentNote.narrative = tempNote.narrative;
 } else {

 currentNote = tempNote;
 }

 dataContext.saveNote(currentNote);

 returnToNotesListPage();

} else {
 // TODO: Inform the user the note is invalid.
}

This function will allow us to validate a note before committing it to the cache. We are going to

implement isValid in the NoteModel.js file. Here’s the code:

Notes.NoteModel.prototype.isValid = function () {
 "use strict";
 if (this.title && this.title.length > 0) {
 return true;
 }
 return false;
};

A check on the title property is enough to validate the note. Nothing complicated.

Back in onSaveButtonTapped, we find out if we’re editing an existing note by observing the

value of currentNote. If currentNote points to an existing note, we transfer the title and

narrative of the temporary note to it. If currentNote is not pointing to an existing note, we make

it point to the temporary note’s reference. Then, we save the note, new or edited, by calling the

dataContext module’s saveNote function.

We haven’t created saveNote yet, so, let’s go ahead and define a behavior test for it in the

AppSpec.js file:

it("Saves a note to local storage", function () {

 // Make sure LS is empty before the test.
 $.jStorage.deleteKey(notesListStorageKey);
 var notesList = $.jStorage.get(notesListStorageKey);
 expect(notesList).toBeNull();

 // Create a note.
 var dateCreated = new Date();
 var id = dateCreated.getTime().toString();

Copyright MiamiCoder.com Page 57

 var noteModel = new Notes.NoteModel({
 id: id,
 dateCreated: dateCreated,
 title: "",
 narrative: ""
 });

 Notes.dataContext.init(notesListStorageKey);
 Notes.dataContext.saveNote(noteModel);

 // Should contain a note.
 notesList = $.jStorage.get(notesListStorageKey);

 expect(notesList.length).toBe(1);

 // Clean up
 $.jStorage.deleteKey(notesListStorageKey);
});

In this spec, we first empty the local storage container we will use. Then, we save a dummy note

by calling saveNote on the dataContext module. Last, we load the notes list from local storage,

and assert that it contains one item.

As the saveNote function is missing, the test should fail:

In the dataContext module, let’s create saveNote as follows:

var saveNote = function (noteModel) {

 var found = false;
 var i;

 for (i = 0; i < notesList.length; i += 1) {

Copyright MiamiCoder.com Page 58

 if (notesList[i].id === noteModel.id) {
 notesList[i] = noteModel;
 found = true;
 i = notesList.length;
 }
 }

 if (!found) {
 notesList.splice(0, 0, noteModel);
 }

 saveNotesToLocalStorage();
};

This function is straightforward. We start by iterating over the array existing notes. If we find

the id of the edited note, we “edit” the existing note through an in-place replacement with the

supplied note. If don’t find the id, we simply place the supplied note at the beginning of the

array.

As it is a public function, let’s add it to the module’s public interface:

var public = {
 init: init,
 getNotesList: getNotesList,
 createBlankNote: createBlankNote,
 saveNote: saveNote
};

Finally, we call the private function saveNotesToLocalStorage, which we also need to add to the

dataContext module. This is where we save the modified array to local storage:

var saveNotesToLocalStorage = function () {
 $.jStorage.set(notesListStorageKey, notesList);
};

Let’s run the spec again. This time, it should pass:

Copyright MiamiCoder.com Page 59

Back in the controller’s onSaveButtonTapped function, we also wrote a call to the helper

function returnToNotesListPage, which we will implement like so:

var returnToNotesListPage = function () {

 $.mobile.changePage("#" + notesListPageId,
 { transition: "slide", reverse: true });
};

We will call this convenience function every time we need to return to the Notes List page.

There is one additional step we need to implement so we can edit and save notes. We need to

make sure we reset the currentNote reference after a note is saved. We can do this from the

pagechange event handler, onPageChange, within the switch statement:

var onPageChange = function (event, data) {

 var toPageId = data.toPage.attr("id");
 var fromPageId = null;

 if (data.options.fromPage) {
 fromPageId = data.options.fromPage.attr("id");
 }

 switch (toPageId) {

 case notesListPageId:
 resetCurrentNote(); // <-- Reset reference to the note being edited.
 renderNotesList();

Copyright MiamiCoder.com Page 60

 break;

 case noteEditorPageId:

 if (fromPageId === notesListPageId) {
 renderSelectedNote(data);
 }
 break;
 }
};

When we’re navigating back to the Notes List page, we’re now invoking the private function

resetCurrentNote, which looks like this:

var resetCurrentNote = function () {
 currentNote = null;
};

We’re almost ready to test on the emulator again. First, we’ll go back to the mobileinit handler

and comment out the call to createDummyNotes. We don’t need it anymore:

$(document).bind("mobileinit", function () {
 //Notes.testHelper.createDummyNotes("Notes.NotesList");
 Notes.controller.init();
});

Finally, we must clear the emulator’s cache to remove the dummy notes we created . Then, check

the app on the emulator, where we should be able to create and edit notes:

Copyright MiamiCoder.com Page 61

Getting Ready to Validate a Data Model

We decided that we are going to consider that a note is valid when it has a title, and we are not

going to force our users to enter a narrative before they can save the note. We defined this

behavior through the isValid function of the NoteModel class:

Notes.NoteModel.prototype.isValid = function () {
 "use strict";
 if (this.title && this.title.length > 0) {
 return true;
 }
 return false;
};

Copyright MiamiCoder.com Page 62

We also left an empty branch in the onSaveNoteButtonTapped function of the controller

module, where we need to add the code that will inform our user that her note is invalid.

Here is the function as we originally created it:

var onSaveNoteButtonTapped = function () {

 // Validate note.
 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);
 var tempNote = dataContext.createBlankNote();

 tempNote.title = titleEditor.val();
 tempNote.narrative = narrativeEditor.val();

 if (tempNote.isValid()) {

 if (null !== currentNote) {

 currentNote.title = tempNote.title;
 currentNote.narrative = tempNote.narrative;
 } else {

 currentNote = tempNote;
 }

 dataContext.saveNote(currentNote);

 returnToNotesListPage();

 } else {
 // TODO: Inform the user the note is invalid.
 }
};

Before we complete this function, we need to define what UI elements we will use to inform the

user that her note is invalid. We can accomplish this with a jQuery Mobile dialog. In our case, we

want to create a very simple dialog, made of a header and a short message to explain our users

what is happening:

Copyright MiamiCoder.com Page 63

How to Create a Dialog With jQuery Mobile

One of the ways you tell jQuery Mobile to display a page as a dialog consists of using the data-

role=”dialog” attribute. We will follow this approach, defining an Invalid Note dialog in the

index.html file as follows:

<!--Invalid Note dialog-->
<div id="invalid-note-dialog" data-role="dialog" data-title="Invalid Note" data-
theme="e">
 <div data-role="header" data-theme="e">
 <h1>Wait!</h1>
 </div>
 <div data-role="content">
 <p>Enter a title for this note.</p>
 </div>
</div>

We will insert this markup right after the Note Editor page in the index.html file. Note how we

use the data-theme=”e” attribute to change the appearance of the dialog. Applying the E swatch

to the dialog helps give it more of a warning look.

With the dialog in place, we need to go in the controller module and add an identifier for it:

var invalidNoteDlgSel = "#invalid-note-dialog";

This identifier will allow us to activate the dialog in the onSaveNoteButtonTapped method of

the controller module like so:

var onSaveNoteButtonTapped = function () {

 // Validate note.
 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);
 var tempNote = dataContext.createBlankNote();

 tempNote.title = titleEditor.val();
 tempNote.narrative = narrativeEditor.val();

Copyright MiamiCoder.com Page 64

 if (tempNote.isValid()) {

 if (null !== currentNote) {

 currentNote.title = tempNote.title;
 currentNote.narrative = tempNote.narrative;
 } else {

 currentNote = tempNote;
 }

 dataContext.saveNote(currentNote);

 returnToNotesListPage();

 } else {
 // Inform the user the note is invalid.
 $.mobile.changePage(invalidNoteDlgSel, defaultDlgTrsn);
 }
};

Note that we are activating the dialog via the $.mobile.changePage method, which you can use

to trigger page changes programmatically. This function takes a reference to the page in

question, as well as the transition you want to use when bringing the page into view.

Instead of passing an inline-defined transition, we are going to define a default transition, which

we will use for all the dialogs in the application. The following one-liner will define

defaultDlgTrsn right at the beginning of the controller module:

var defaultDlgTrsn = { transition: "slideup" };

It is time to check how the dialog looks. If we start our emulator and try to save a note with a

blank title, we should see the Invalid Note dialog become active:

Copyright MiamiCoder.com Page 65

Creating a Confirmation Dialog

The last feature we need to address in the Note Editor page is deleting a note. Users of the

application will initiate this workflow by tapping the Delete button on the Edit Note page:

When the user taps the button, we are going to render a small dialog, asking her for

confirmation:

Copyright MiamiCoder.com Page 66

If the user taps the No button on the confirmation dialog, we will just return to the Note Editor

page. If she taps the Yes button, we will proceed to delete the note, and then return to the Notes

List page.

Let’s first create the dialog, and then connect it to the Delete button on the Note Editor page. We

will use the following markup to create the Confirm Delete Note dialog in the index.html file:

<!-- Confirm Delete Note dialog-->
<div id="confirm-delete-note-dialog" data-role="dialog" data-title="Delete Note" >
 <div data-role="header">
 <h1>
 Delete Note?</h1>
 </div>
 <div data-role="content">

Copyright MiamiCoder.com Page 67

 <div id="delete-note-content-placeholder"></div>
 <a id="cancel-delete-note-button" data-role="button" data-theme="b" data-
rel="back">No
 Yes
 </div>
</div>

Notice how we again use the data-role=”dialog” attribute to have the Framework render this

page as a dialog. We will use the delete-note-content-placeholder div to render the selected note.

The interesting thing about the buttons, which are links decorated with the data-role=”button”

attribute, is how we’re using theme swatches to define their colors.

We’re using the B swatch, a built-in swatch of the default jQuery Mobile theme, for the No

button. The Yes button uses the F swatch to give the button the red color. This is a custom

swatch that we will create in a few minutes.

With the dialog created, we need to focus on how we will render it from within the controller

module. Evidently, we need to create an identifier for the dialog:

var confirmDeleteNoteDlgSel = "#confirm-delete-note-dialog";

We also need identifiers for the Delete button in the Note Editor page, the Yes button in the

Confirm Delete Note dialog, and the div element that will serve as placeholder in the dialog.

Let’s add them to the controller module like so:

var deleteNoteButtonSel = "#delete-note-button",
 deleteNoteContentPlaceholderSel = "#delete-note-content-placeholder",
 okToDeleteNoteButtonSel = "#ok-to-delete-note-button";

As the dialog will be activated upon the user tapping the Delete button in the Note Editor page,

we will define a tap handler for this button in the init function of the controller. Something like

this will do:

var init = function () {

 // Rest of the function omitted for brevity.

 d.delegate(deleteNoteButtonSel, "tap", onDeleteNoteButtonTapped);
};

Here we are saying that the tap event on the button will invoke the onDeleteNoteButtonTapped

function, which we will now add to the controller module:

Copyright MiamiCoder.com Page 68

var onDeleteNoteButtonTapped = function () {

 if (currentNote) {
 // Render selected note in confirmation dlg.
 // Deletion will be handled elsewhere, after user confirms it's ok to delete.

 var noteContentPlaceholder = $(deleteNoteContentPlaceholderSel);

 noteContentPlaceholder.empty();
 $("<h3>" + currentNote.title + "</h3><p>" + currentNote.narrative +
"</p>").appendTo(noteContentPlaceholder);

 $.mobile.changePage(confirmDeleteNoteDlgSel, defaultDlgTrsn);
 }
};

In onDeleteNotebuttonTapped, we first render the current note’s title and narrative in the

content area of the dialog. We can accomplish this by simply appending html nodes to the

placeholder we defined within the dialog. Then, we use the $mobile.changePage function to

make the dialog the active page.

Note how re-use the defaultDlgTrsn, previously defined when we were creating the Invalid Note

dialog.

Now we are at a point where we are waiting for the user’s answer to our question – delete the

note, yes or no? The answer will tell us whether to delete the note or cancel the workflow.

Deleting a Note

Cancellation will occur upon the user tapping the No button. We don’t have to write code for this

scenario, as we are using the data-rel=”back” attribute for the No button:

Copyright MiamiCoder.com Page 69

<a id="cancel-delete-note-button" data-role="button" data-theme="b" data-
rel="back">No

This role will cause the button’s tap event to initiate a transition to the previous page, the Note

Editor page, which is exactly what we want.

The Yes button is a little different. When the user taps this button, we need to delete the note

and initiate a transition to the Notes List page. The Notes List page should then render the

updated notes list.

We are going to define the tap handler for the Yes button in the controller module’s init

function, binding to the button’s tap event:

var init = function () {

 // Rest of the function omitted for brevity.

 d.delegate(okToDeleteNoteButtonSel, "tap", onOKToDeleteNoteButtonTapped);
};

Then, we will define onOKToDeleteNoteButtonTapped like so:

var onOKToDeleteNoteButtonTapped = function () {

 dataContext.deleteNote(currentNote);
 returnToNotesListPage();
};

Simple, right? We first call the dataContext module’s deleteNote, and then transition to the

Notes List page by calling returnToNotesListPage, a function that we created when we were

working on the steps required to save a note.

Before defining the deleteNote function in the dataContext module, let’s create a test for it in the

AppSpec.js file:

it("Removes a note from local storage", function () {

 // Create a note.
 var dateCreated = new Date();
 var id = dateCreated.getTime().toString();

 var noteModel = new Notes.NoteModel({
 id: id,
 dateCreated: dateCreated,
 title: "",
 narrative: ""

Copyright MiamiCoder.com Page 70

 });

 // Start with an empty notes list.
 var notesList = [];
 // Add note to local storage.
 notesList.push(noteModel);
 $.jStorage.set(notesListStorageKey, notesList);
 notesList = $.jStorage.get(notesListStorageKey);
 expect(notesList.length).toEqual(1);

 // Proceed to delete.
 Notes.dataContext.init(notesListStorageKey);
 Notes.dataContext.deleteNote(noteModel);

 // Should retrieve empty array
 notesList = $.jStorage.get(notesListStorageKey);
 expect(notesList.length).toEqual(0);

 // Clean up
 $.jStorage.deleteKey(notesListStorageKey);

});

In the test, we first create a note and save it directly to local storage. Then, we use the function

being tested, deleteNote, to remove the note. The expectation is that we can delete a note using

this function.

The test should fail, as deleteNote still does not exist:

With the test in place, let’s head over to the DataContext.js file, and define deleteNote like so:

var deleteNote = function (noteModel) {

 var i;
 for (i = 0; i < notesList.length; i += 1) {
 if (notesList[i].id === noteModel.id) {
 notesList.splice(i, 1);

Copyright MiamiCoder.com Page 71

 i = notesList.length;
 }
 }

 saveNotesToLocalStorage();
};

Again, a very simple function that loops through the array of existing notes, trying to find one

with the id of the note we want to delete. If found, the note is removed from the array. The

updated array is then serialized to local storage through a call to saveNotesToLocalStorage.

We also need to add deleteNote to the public interface of the module so we can invoke it from

the controller module:

var public = {
 init: init,
 getNotesList: getNotesList,
 createBlankNote: createBlankNote,
 saveNote: saveNote,
 deleteNote: deleteNote
};

Time to re-run the test, which should pass if we didn’t make any mistakes:

This completes the code that we needed for the Delete Note feature. The UI elements are in

place, and the controller and dataContext modules are ready to handle this workflow.

Copyright MiamiCoder.com Page 72

Now you can fire up the emulator, and verify that you can delete notes.

Using a Custom Theme Swatch in jQuery Mobile

Before we end this chapter, let us take care of a cosmetic issue. How about changing the color of

the Yes button in the Delete Note dialog?

One approach to accomplish this consists of using a custom jQuery Mobile theme swatch. We

will take advantage of the ThemeRoller for jQuery Mobile

(http://jquerymobile.com/themeroller/) to change the swatch of the Yes button.

As you already saw, we assigned the data-theme=”f” attribute to the button when we created the

dialog:

Copyright MiamiCoder.com Page 73

Yes

With this in mind, we will head over to the ThemeRoller website and define an F swatch. The

swatch has several properties, but we’re only interested in those that apply to buttons. Let’s use

the following properties for the different buttons states:

After entering these values, we can use the Download Theme link to download the theme file.

The file contains styles for all elements enhanced by the jQuery Mobile Framework. We will copy

the styles that apply to button elements, or elements decorated with the data-role=”button”

attribute, which we will add to our app.css file like so:

Copyright MiamiCoder.com Page 74

.ui-btn-up-f {
 border: 1px solid #c1272d /*{f-bup-border}*/;
 background: #c1272d /*{f-bup-background-color}*/;
 font-weight: bold;
 color: #ffffff /*{f-bup-color}*/;
 text-shadow: 0 /*{f-bup-shadow-x}*/ 1px /*{f-bup-shadow-y}*/ 1px /*{f-
bup-shadow-radius}*/ #444444 /*{f-bup-shadow-color}*/;
 background-image: -webkit-gradient(linear, left top, left bottom, from(
#D42A31 /*{f-bup-background-start}*/), to(#AD2328 /*{f-bup-background-end}*/)); /*
Saf4+, Chrome */
 background-image: -webkit-linear-gradient(top, #D42A31 /*{f-bup-background-
start}*/, #AD2328 /*{f-bup-background-end}*/); /* Chrome 10+, Saf5.1+ */
 background-image: -moz-linear-gradient(top, #D42A31 /*{f-bup-background-
start}*/, #AD2328 /*{f-bup-background-end}*/); /* FF3.6 */
 background-image: -ms-linear-gradient(top, #D42A31 /*{f-bup-background-
start}*/, #AD2328 /*{f-bup-background-end}*/); /* IE10 */
 background-image: -o-linear-gradient(top, #D42A31 /*{f-bup-background-
start}*/, #AD2328 /*{f-bup-background-end}*/); /* Opera 11.10+ */
 background-image: linear-gradient(top, #D42A31 /*{f-bup-background-
start}*/, #AD2328 /*{f-bup-background-end}*/);
}
.ui-btn-up-f a.ui-link-inherit {
 color: #ffffff /*{f-bup-color}*/;
}

.ui-btn-hover-f {
 border: 1px solid #DD2C33 /*{f-bhover-border}*/;
 background: #DD2C33 /*{f-bhover-background-color}*/;
 font-weight: bold;
 color: #ffffff /*{f-bhover-color}*/;
 text-shadow: 0 /*{f-bhover-shadow-x}*/ 1px /*{f-bhover-shadow-y}*/ 1px
/*{f-bhover-shadow-radius}*/ #444444 /*{f-bhover-shadow-color}*/;
 background-image: -webkit-gradient(linear, left top, left bottom, from(
#F33038 /*{f-bhover-background-start}*/), to(#C6272D /*{f-bhover-background-
end}*/)); /* Saf4+, Chrome */
 background-image: -webkit-linear-gradient(top, #F33038 /*{f-bhover-background-
start}*/, #C6272D /*{f-bhover-background-end}*/); /* Chrome 10+, Saf5.1+ */
 background-image: -moz-linear-gradient(top, #F33038 /*{f-bhover-background-
start}*/, #C6272D /*{f-bhover-background-end}*/); /* FF3.6 */
 background-image: -ms-linear-gradient(top, #F33038 /*{f-bhover-background-
start}*/, #C6272D /*{f-bhover-background-end}*/); /* IE10 */
 background-image: -o-linear-gradient(top, #F33038 /*{f-bhover-background-
start}*/, #C6272D /*{f-bhover-background-end}*/); /* Opera 11.10+ */
 background-image: linear-gradient(top, #F33038 /*{f-bhover-background-
start}*/, #C6272D /*{f-bhover-background-end}*/);
}
.ui-btn-hover-f a.ui-link-inherit {
 color: #ffffff /*{f-bhover-color}*/;
}
.ui-btn-down-f {
 border: 1px solid #DD2C33 /*{f-bdown-border}*/;
 background: #DD2C33 /*{f-bdown-background-color}*/;
 font-weight: bold;
 color: #ffffff /*{f-bdown-color}*/;

Copyright MiamiCoder.com Page 75

 text-shadow: 0 /*{f-bdown-shadow-x}*/ 1px /*{f-bdown-shadow-y}*/ 1px
/*{f-bdown-shadow-radius}*/ #444444 /*{f-bdown-shadow-color}*/;
 background-image: -webkit-gradient(linear, left top, left bottom, from(
#C6272D /*{f-bdown-background-start}*/), to(#F33038 /*{f-bdown-background-end}*/));
/* Saf4+, Chrome */
 background-image: -webkit-linear-gradient(top, #C6272D /*{f-bdown-background-
start}*/, #F33038 /*{f-bdown-background-end}*/); /* Chrome 10+, Saf5.1+ */
 background-image: -moz-linear-gradient(top, #C6272D /*{f-bdown-background-
start}*/, #F33038 /*{f-bdown-background-end}*/); /* FF3.6 */
 background-image: -ms-linear-gradient(top, #C6272D /*{f-bdown-background-
start}*/, #F33038 /*{f-bdown-background-end}*/); /* IE10 */
 background-image: -o-linear-gradient(top, #C6272D /*{f-bdown-background-
start}*/, #F33038 /*{f-bdown-background-end}*/); /* Opera 11.10+ */
 background-image: linear-gradient(top, #C6272D /*{f-bdown-background-
start}*/, #F33038 /*{f-bdown-background-end}*/);
}
.ui-btn-down-f a.ui-link-inherit {
 color: #ffffff /*{f-bdown-color}*/;
}

After adding these classes to the app.css file, we can check the dialog’s look. The Yes button

should now render with the new F swatch’s properties:

Where Are We?

In this chapter we learned how to create a jQuery Mobile form, how load data into the form, and

how to save form data to local storage. We also learned how to create jQuery Mobile dialogs, and

how to create a custom jQuery Mobile theme swatch.

We are very close to having a feature-complete application, as the app allows us to create,

update and delete notes.

Copyright MiamiCoder.com Page 76

Next, we are going to learn how to synchronize the notes cache with the server.

Chapter 5: Synchronizing With the Server

What You Will Learn In This Chapter

In this chapter we are going to implement one important feature of the application – Keeping

the list of notes synchronized with the server and other clients. Users will have access to this

feature through the Sync button we placed in the Notes List Page:

Copyright MiamiCoder.com Page 77

While building the synchronization feature, we will cover the following topics:

 How to upload data to a server.

 How to receive data from a server.

 How to keep application data synchronized with the server.

Copyright MiamiCoder.com Page 78

How Synchronization Will Work

Let’s take a minute to think about what needs to happen to keep the notes in sync.

We are going to design this feature assuming a hypothetical scenario where a number of devices

running the application will keep a list of notes synchronized. Synchronization will occur

through the server.

In the application, when a user taps the Sync button, we want to send the list of cached notes to

the server so they can be safely stored. We also want to receive new notes that other clients have

stored on the server. In short, we are going to implement two-way synchronization.

As we have done with all the previous data access routines, we will place the synchronization

logic in the dataContext module. We also want to know when the synchronization is finished so

we can refresh the notes list presented to the user. We will accomplish this through a callback

function, which we will invoke once the dataContext module completes the sync operation.

We want the tap event on the Sync button to invoke a handler in the controller module. This will

in turn invoke the synchronization function in the dataContext module.

Creating a Tap Handler for the Sync Button

We will first work on the tap event handler for the Sync button. In the controller module, we are

going to create a reference to the Sync button like so:

var syncNotesWithServerBtnSel = "#sync-notes-button";

Copyright MiamiCoder.com Page 79

Next, we will hook up a tap handler for the button. We can do this in the controller’s init

function:

var init = function () {

 // Rest of the init() function omitted for brevity...

 d.delegate(syncNotesWithServerBtnSel, "tap", onSyncNotesWithServerButtonTapped);
};

Now, the onSyncNotesWithServerButtonTapped function, which we will add to the controller

module, right before the init function:

var onSyncNotesWithServerButtonTapped = function () {

 dataContext.startNotesSync(onNotesSyncCompleted);
};

The handler is simply delegating the job of synchronizing notes to the dataContext module’s

startNotesSync function, which takes the callback function onNotesSyncCompleted as an

argument. We will define this callback in a few minutes.

Changing jQuery Mobile’s Default Loading Message

Uploads and downloads from the server do not happen instantaneously. Before we continue our

work in the dataContext module, we are going to add two helper variables to the controller

module. They will allow us to alert the user when the synch operation is in progress.

Let’s define the syncingMsg and defaultLoadingMsg variables like so:

var defaultLoadingMsg,
 syncingMsg = "Syncing Notes";

The purpose of syncingMsg is obvious. We will use this variable to store the message we want to

display when the synchronization operation is in progress. The defaultLoadingMsg variable will

temporarily store jQuery Mobile’s default loading message while we display the “Syncing Notes”

message.

We will store the default loadingMessage value by adding this line to the init function in the

controller module:

Copyright MiamiCoder.com Page 80

defaultLoadingMsg = $.mobile.loadingMessage;

Now we will modify the onSyncNotesWithServerButtonTapped function as follows so it displays

the “Syncing Notes” message:

var onSyncNotesWithServerButtonTapped = function () {

 $.mobile.loadingMessage = syncingMsg;
 $.mobile.showPageLoadingMsg();
 dataContext.startNotesSync(onNotesSyncCompleted);
};

In the above code, we are invoking the Framework’s showPageLoadingMsg function after

setting the loading message to the value we desire. This takes care of showing the correct

message to the user. When the onNotesSyncCompleted callback is invoked, we will need to turn

the message off, and restore the default value of the Framework’s loadingMessage.

The onNotesSyncCompleted callback is a function that will first re-render the notes list, and

then turn off the “Syncing Notes” message:

var onNotesSyncCompleted = function (syncResult) {

 renderNotesList();
 $.mobile.hidePageLoadingMsg();
 $.mobile.loadingMessage = defaultLoadingMsg;

};

This is all it takes from the controller module’s perspective to handle the notes synchronization

feature. The more interesting pieces are in the dataContext module.

Creating a Test for An Asynchronous Operation

After a tap on the Sync Button, the controller will ask the dataContext module to synchronize

the existing notes with the server:

var onSyncNotesWithServerButtonTapped = function () {

 $.mobile.loadingMessage = syncingMsg;
 $.mobile.showPageLoadingMsg();
 dataContext.startNotesSync(onNotesSyncCompleted);
};

Let’s first define an empty startNotesSync function in the dataContext module:

Copyright MiamiCoder.com Page 81

var startNotesSync = function (callback) {

};

We are also going to expose this function through the module’s public interface:

var pub = {
 // Other public functions omitted for brevity.

 startNotesSync: startNotesSync
};

The startNotesSync function will initiate an AJAX request to the server, uploading the notes

cached on the device, and downloading the notes that exist on the server. Before we implement

this function, we are going to define the following test in the AppSpec.js file:

it("Invokes callback after notes sync with server", function () {

 var notesSyncTestDelayInMs = 15000; // 15 sec. Increase this delay if the test
fails because the server call has not returned.
 var callBackInvoked = false;

 var callback = function (syncResult) {
 callBackInvoked = true;
 };

 runs(function () {

 Notes.dataContext.init({
 storageKey: notesListStorageKey,
 serverUrl: serverUrlForTest
 });
 Notes.dataContext.startNotesSync(callback);

 });

 waits(notesSyncTestDelayInMs);

 runs(function () {
 expect(callBackInvoked).toBeTruthy();
 });

});

The purpose of this test is to make sure that the startNotesSync function effectively invokes the

supplied callback. Invoking the callback will notify the controller module that the

Copyright MiamiCoder.com Page 82

synchronization finished. Let’s take a detailed look at the test, as in it we are using features of

the Jasmine Framework that we had not used before.

We begin the test creating a couple of variables and a simple callback function that will help us

perform the test:

var notesSyncTestDelayInMs = 15000;
var callBackInvoked = false;

var callback = function (syncResult) {
 callBackInvoked = true;
};

Next, we use Jasmine’s runs function to define a couple of blocks of statements that will run

serially. The first block initializes the dataContext module and invokes the startNotesSync

function:

// First runs() block.
runs(function () {

 Notes.dataContext.init({
 storageKey: notesListStorageKey,
 serverUrl: serverUrlForTest
 });
 Notes.dataContext.startNotesSync(callback);

});

The second block invokes the expectation. This is where we verify that the callback was invoked:

// Second runs() block.
runs(function () {
 expect(callBackInvoked).toBeTruthy();
});

Jasmine’s waits function introduces a delay between the two runs blocks:

waits(notesSyncTestDelayInMs);

The delay allows us to wait for the operations started by startNotesSync to finish before we

proceed to confirm that the callback was invoked. This is a very convenient way to test long-

running operations. For example, operations that perform AJAX requests.

Before running the test, we need to define the serverUrlForTest variable at the top of the test

suite:

Copyright MiamiCoder.com Page 83

var notesListStorageKey = "Notes.NotesListTest",
 serverUrlForTest = "notes.aspx";

If we go ahead and run the test, it should fail:

There is nothing wrong with this. Remember that we are missing the startNotesSync

implementation.

Passing a Server URL to the dataContext Module

Before we continue with startNotesSync, let’s make a small modification to the dataContext

module. First, we will add the serverUrl variable to the module. This variable will store the URL

the module will use for notes synchronization:

var serverUrl;

Then, we are going to modify the init function, replacing the storageKey argument with a more

generic config argument, which will allow us pass not only the storageKey, but also the

serverUrl value:

 var init = function (config) {
 notesListStorageKey = config.storageKey;

Copyright MiamiCoder.com Page 84

 serverUrl = config.serverUrl;
 loadNotesFromLocalStorage();
};

This is all we need to pass the server’s URL to this module. You probably noticed that we used

this configuration in the asynchronous operation test we created in the previous section.

Now we need to revisit the controller module’s init function, and make sure we pass the config

object to the dataContext’s own init. Let’s open the Controller.js file and modify the init function

as follows:

var init = function () {

 dataContext.init({
 storageKey: appStorageKey,
 serverUrl: appServerUrl
 });

 var d = $(document);
 d.bind("pagebeforechange", onPageBeforeChange);
 d.bind("pagechange", onPageChange);
 d.delegate(saveNoteButtonSel, "tap", onSaveNoteButtonTapped);
 d.delegate(deleteNoteButtonSel, "tap", onDeleteNoteButtonTapped);
 d.delegate(okToDeleteNoteButtonSel, "tap", onOKToDeleteNoteButtonTapped);
 d.delegate(syncNotesWithServerBtnSel, "tap", onSyncNotesWithServerButtonTapped);

 defaultLoadingMsg = $.mobile.loadingMessage;
};

Now, the controller’s init is receiving an object containing the storageKey and serverUrl values

needed by the dataContext’s init function. Notice that we are assigning the appServerUrl value

to the serverUrl property of the object we pass to the init function. Let’s go ahead and define

appServerUrl at the top of the controller module:

var appServerUrl = "notes.php";

We will initially perform the notes synchronization against a PHP page. We will write the code

for this page at the end of this chapter, along with a C# version.

Beginning the Notes Synchronization

Our synchronization workflow will begin with a tap of the Sync Button, which will invoke the

startNotesSync function. We are going to implement startNotesSync like so:

var startNotesSync = function (callback) {

Copyright MiamiCoder.com Page 85

 $.ajax({
 url: serverUrl,
 type: "post",
 data: "notes=" + JSON.stringify(notesList),
 success: function (data, textStatus, jqXHR) {

 var syncResult = new Notes.AjaxResult({
 success: true,
 errorThrown: null
 });

 endNotesSync(syncResult, data, callback);
 },
 error: function (jqXHR, textStatus, errorThrown) {

 var syncResult = new Notes.AjaxResult({
 success: false,
 errorThrown: errorThrown
 });

 endNotesSync(syncResult, null, callback);
 }
 });
};

This function takes a callback passed from the controller module as its argument, and fires an

AJAX request that sends the serialized notes list to the server. The interesting details lie in the

success and error callbacks. Both callbacks create an instance of the AjaxResult class, which we

have not defined yet, and then invoke the endNotesSync function, which we have not created

either.

Let’s talk about the AjaxResult class. We will use an instance of this class to pass the result of the

AJAX request, as well as any error that occurred during the operation, to the endNotesSync

function. In order to define this class, we are going to create the AjaxResult.js file in the app

directory:

Copyright MiamiCoder.com Page 86

In the file, we will enter the following code:

Notes.AjaxResult = function (config) {
 "use strict"
 this.success = config.success,
 this.errorThrown = config.errorThrown
};

As we already discussed, we will just use a couple of properties, success and errorThrown, to

indicate whether the operation succeeded, and store the exception thrown when the operation

does not succeed.

Before moving on, we need to include the AjaxResult.js in the index.html and specrunner.html

files. We will include it in index.html like so:

<head>
 <title></title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="../lib/jqm/jquery.mobile-1.3.0.min.css" rel="stylesheet"
type="text/css" />
 <link href="css/app.css" rel="stylesheet" type="text/css" />
 <script src="../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>
 <script src="../lib/jstorage/jstorage.min.js" type="text/javascript"></script>
 <script src="app/DataContext.js" type="text/javascript"></script>
 <script src="app/Controller.js" type="text/javascript"></script>
 <script src="app/NoteModel.js" type="text/javascript"></script>
 <script src="app/AjaxResult.js" type="text/javascript"></script>
 <script src="spec/TestHelper.js" type="text/javascript"></script>
 <script src="../lib/jqm/jquery.mobile-1.3.0.min.js"
type="text/javascript"></script>
</head>

Then, in specrunner.html:

<head>
 <title>Jasmine Test Runner</title>

Copyright MiamiCoder.com Page 87

 <!-- Libraries -->
 <script src="../lib/jqm/jquery-1.8.2.min.js" type="text/javascript"></script>
 <script src="../lib/jstorage/jstorage.min.js" type="text/javascript"></script>
 <!-- Jasmine -->
 <link href="../lib/jasmine/jasmine.css" rel="stylesheet" type="text/css" />
 <script src="../lib/jasmine/jasmine.js" type="text/javascript"></script>
 <script src="../lib/jasmine/jasmine-html.js" type="text/javascript"></script>
 <!-- App -->
 <script src="app/DataContext.js" type="text/javascript"></script>
 <script src="app/NoteModel.js" type="text/javascript"></script>
 <script src="app/AjaxResult.js" type="text/javascript"></script>
 <!-- Test Helper -->
 <script src="spec/TestHelper.js" type="text/javascript"></script>
 <!-- Spec -->
 <script src="spec/AppSpec.js" type="text/javascript"></script>
</head>

Adding Synchronization Time Stamps to the Note Model

If we upload a notes list to the server, and receive a new list, we will not know which notes were

updated. The reason for this is that our NoteModel class does not have any properties that help

us determine if a note was ever uploaded, and, if so, when the upload took place.

We can easily fix this by adding a lastUploadDate property to the model. This property will tell

us when the note was last uploaded:

Notes.NoteModel = function (config) {
 "use strict";
 this.id = config.id;
 this.dateCreated = config.dateCreated;
 this.title = config.title;
 this.narrative = config.narrative;
 this.lastUploadDate = config.lastUploadDate;
};

We will set this property to the correct value when we implement the endNotesSync function.

There is another piece of information that we need to know in addition to the last upload date.

When was the last time the note was updated? If we don’t know this, we will not be able to

determine if a version of a note uploaded to the server is newer than a version that already exists

on the server.

To satisfy this requirement, we are going to add the lastUpdateDate property to the NoteModel

class. The server will use the value of this property to update its notes cache:

Notes.NoteModel = function (config) {
 "use strict";
 this.id = config.id;

Copyright MiamiCoder.com Page 88

 this.dateCreated = config.dateCreated;
 this.title = config.title;
 this.narrative = config.narrative;
 this.lastUpdateDate = config.lastUpdateDate;
 this.lastUploadDate = config.lastUploadDate;
};

We need to set lastUpdateDate to the correct value when a note is updated. This will happen in

the controller’s onSaveNoteButtonTapped function:

var onSaveNoteButtonTapped = function () {

 // Validate note.
 var titleEditor = $(noteTitleEditorSel);
 var narrativeEditor = $(noteNarrativeEditorSel);
 var tempNote = dataContext.createBlankNote();

 tempNote.title = titleEditor.val();
 tempNote.narrative = narrativeEditor.val();
 tempNote.lastUpdateDate = new Date();

 if (tempNote.isValid()) {

 if (null !== currentNote) {

 if (currentNote.title !== tempNote.title || currentNote.narrative !==
tempNote.narrative) {

 currentNote.title = tempNote.title;
 currentNote.narrative = tempNote.narrative;
 currentNote.lastUpdateDate = tempNote.lastUpdateDate; // Update last
upload date.
 }

 } else {

 currentNote = tempNote;
 }

 $.mobile.showPageLoadingMsg();

 dataContext.saveNote(currentNote);

 $.mobile.hidePageLoadingMsg();

 returnToNotesListPage();

 } else {
 $.mobile.changePage(invalidNoteDlgSel, defaultDlgTrsn);
 }
};

Copyright MiamiCoder.com Page 89

One last detail - if someone deletes a note on a device, how will the server know it needs to

delete the note from its cache? We will resolve this by adding the deleteAfterUpload property to

the NoteModel class, and modifying the delete note workflow.

The NoteModel class will look like this:

Notes.NoteModel = function (config) {
 "use strict";
 this.id = config.id;
 this.dateCreated = config.dateCreated;
 this.title = config.title;
 this.narrative = config.narrative;
 this.lastUpdateDate = config.lastUpdateDate;
 this.lastUploadDate = config.lastUploadDate || config.dateCreated;
 this.deleteAfterUpload = config.deleteAfterUpload || false;
};

Additionally, we will modify the controller’s onOKToDeleteNoteButtonTapped function like so:

var onOKToDeleteNoteButtonTapped = function () {

 $.mobile.showPageLoadingMsg()

 //dataContext.deleteNote(currentNote);
 currentNote.deleteAfterUpload = true;
 dataContext.saveNote(currentNote);

 $.mobile.hidePageLoadingMsg();

 returnToNotesListPage();
};

Now we are not deleting the note immediately. We are simply flagging it for deletion after it is

uploaded to the server. This gives the server the opportunity to remove the note from its cache.

We will also use the deleteAfterUpload property to hide the notes flagged for deletion so they

are not rendered on the Notes List View. This requires a small change in the controller’s

renderNotesList function, where we will inspect the flag, and add a list item for the note only if

the flag has not been set to true:

var renderNotesList = function () {

 var notesList = dataContext.getNotesList();
 var view = $(notesListSelector);

 view.empty();

 if (notesList.length === 0) {

Copyright MiamiCoder.com Page 90

 $(noNotesCachedMsg).appendTo(view);
 } else {

 var liArray = [],
 notesCount,
 note,
 dateGroup,
 noteDate,
 i,
 ul,
 liHtml,
 liIcon,
 lastUpdateDate,
 lastUploadDate;

 notesCount = notesList.length,
 ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

 for (i = 0; i < notesCount; i += 1) {

 note = notesList[i];

 noteDate = (new Date(note.dateCreated)).toDateString();

 // We will not render notes that are marked for deletion.
 if (!note.deleteAfterUpload) {

 if (dateGroup !== noteDate) {
 liArray.push("<li data-role=\"list-divider\">" + noteDate +
"");
 dateGroup = noteDate;
 }

 lastUpdateDate = new Date(note.lastUpdateDate).getTime();
 lastUploadDate = new Date(note.lastUploadDate).getTime();

 if (lastUpdateDate < lastUploadDate) {
 liIcon = "<img src=\"img/loop_green.png\" alt=\"Uploaded\"
class=\"ui-li-icon\">";
 } else {
 liIcon = "<img src=\"img/loop_red.png\" alt=\"Uploaded\"
class=\"ui-li-icon\">"; ;
 }

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + liIcon
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);

Copyright MiamiCoder.com Page 91

 }

 }

 var listItems = liArray.join("");
 if (listItems.length !== 0) {
 $(listItems).appendTo(ul);
 ul.listview();
 } else {
 view.empty();
 $(noNotesCachedMsg).appendTo(view);
 }
 }
};

Another important change is that we are checking the length of the list in two places, and

displaying a message when the list is empty. First, before iterating through the notes array:

$(noNotesCachedMsg).appendTo(view);

And then, after building the array of list items:

if (listItems.length !== 0) {
 $(listItems).appendTo(ul);
 ul.listview();
} else {
 view.empty();
 $(noNotesCachedMsg).appendTo(view);
}

This requires that we define the noNotesCachedMsg variable at the top of the controller:

var noNotesCachedMsg = "<div>Your notes list is empty.</div>";

With these modifications in place, we can switch our focus on the endNotesSync function. This

function will process the information downloaded from the server.

Parsing Synchronization Results Sent By the Server

The notes synchronization is a two-way process. We are uploading the notes cached on the

device, and receiving any updates stored on the server by other devices. The purpose of

endNotesSync is to parse the data sent from the server and update the notes list on the device.

In the dataContext module, let’s define endNotesSync as follows:

var endNotesSync = function (result, data, callback) {

 var note,

Copyright MiamiCoder.com Page 92

 syncResult,
 syncResults,
 idsOfNotesToDelete = [],
 notesListLength,
 i, j,
 okToContinue = true;

 if (result.success && data) {

 notesListLength = notesList.length;
 syncResults = data;

 // CRUD based on server results.
 for (i = 0; i < notesListLength; i += 1) {
 for (j = 0; j < syncResults.length; j += 1) {

 note = notesList[i];
 syncResult = syncResults[j];

 if (syncResult.isNewNote) {

 // Add any new notes.
 notesList.splice(0, 0, syncResult, note);
 } else {

 // Update notes that made it to the server.
 if (syncResult.note.id === note.id) {

 note.title = syncResult.note.title;
 note.narrative = syncResult.note.narrative;

 note.lastUploadDate = new Date();

 // Find out if we need to delete this note.
 if (note.deleteAfterUpload) {
 idsOfNotesToDelete.push(syncResult.note.id);
 }
 }
 }
 }
 }

 // Delete the notes that were marked for deletion and were successfully
uploaded.
 for (i = 0; i < idsOfNotesToDelete.length; i += 1) {

 notesListLength = notesList.length;
 okToContinue = true;

 for (j = 0; j < notesListLength && okToContinue; j += 1) {

 if (idsOfNotesToDelete[i] === notesList[j].id) {
 notesList.splice(j, 1);
 okToContinue = false;
 }

Copyright MiamiCoder.com Page 93

 }
 }

 saveNotesToLocalStorage();
 }
 callback();
};

We begin the function defining a few helper variables. The more interesting ones are

syncResults, syncResult and idsOfNotesToDelete. We will use syncResults to store the payload

sent by the server. As we will see later, this payload will consist of a JSON-serialized array of

objects. Each of these objects will represent the result of the synchronization of a note, and it

will have the following properties:

 success, which indicates whether the synchronization succeeded

 note, itself a JSON representation of the note in question

 isNewNote, which indicates if the note in question is a note that exists on the server, but

isn’t already cached on the client. This property tells us if the note was sent to the server

by a different device.

The purpose of the syncResult variable is to serve as a placeholder to store one of the objects

above.

The idsOfNotesToDelete array will store the ids of those notes that we need to delete. We will

use it to loop through the notes cached on the device, and remove those whose ids exist in the

array.

After defining our helper variables, we proceed to inspect the result and data arguments, as we

are only interested in updating our notes cache if the AJAX operation succeeded. Then, we point

the syncResults variable to the data argument, and proceed to update the notes cache.

This is a two-step process, where we first add new notes and update existing ones:

// Update based on server results.
for (i = 0; i < notesListLength; i += 1) {
 for (j = 0; j < syncResults.length; j += 1) {

 note = notesList[i];
 syncResult = syncResults[j];

 if (syncResult.isNewNote) {

 // Add any new notes.

Copyright MiamiCoder.com Page 94

 notesList.splice(0, 0, syncResult, note);
 } else {

 // Update notes that made it to the server.
 if (syncResult.note.id === note.id) {

 note.title = syncResult.note.title;
 note.narrative = syncResult.note.narrative;

 note.lastUploadDate = new Date();

 // Find out if we need to delete this note.
 if (note.deleteAfterUpload) {
 idsOfNotesToDelete.push(syncResult.note.id);
 }
 }
 }
 }
}

Observe how we are iterating first over the array of cached notes, and then over the results sent

by the server.

Adding new notes is easy, because the synResult.isNewNote tells us if the downloaded note is

new. If the note is not new, we proceed to transfer its value to its equivalent on the client. This

effectively updates the client’s note with the values sent from the server.

We then set the lastUploadDate property of the note, and finally, perform a special step if the

note was marked for deletion. The step consists of storing the id of the note marked for deletion

in the idsOfNotesToDelete array. Remember that our Delete Note workflow consists of marking

notes for deletion, and deleting the notes after they have been sent to the server. This allows us

to inform the server, as well as other devices, that they also need to delete the note.

The second step in the processing of the results consists of iterating over the

idsOfNotesToDelete array:

// Delete the notes that were marked for deletion and were successfully uploaded.
for (i = 0; i < idsOfNotesToDelete.length; i += 1) {

 notesListLength = notesList.length;
 okToContinue = true;

 for (j = 0; j < notesListLength && okToContinue; j += 1) {

 if (idsOfNotesToDelete[i] === notesList[j].id) {
 notesList.splice(j, 1);
 okToContinue = false;
 }

Copyright MiamiCoder.com Page 95

 }
}

This is where the notes marked for deletion are removed from the local cache. After this step, all

we need to do is save the cache back to local storage:

saveNotesToLocalStorage();

Note that the last line of endNotesSync takes us back to the controller by invoking the callback

function:

callback();

At this point we have a refreshed cache, and all the controller needs to do is re-render the notes

list. This happens in the controller module, in the onNotesSyncCompleted function that we

already created:

var onNotesSyncCompleted = function () {

 renderNotesList();
 $.mobile.hidePageLoadingMsg();
 $.mobile.loadingMessage = defaultLoadingMsg;

};

This function re-renders the notes list through a call to renderNotesList. Then, it hides the

custom message we defined, and sets the Framework’s loadingMessage back to its default value.

Using an Icon to Indicate a Note’s Sync Status

We’ve just re-rendered the notes list after synchronization with the server took place. We have a

refreshed notes cache, from which some notes may have been deleted, and some updated. In

order to provide the user a form of visual feedback on the status of the notes cache, we are going

to modify the Notes List page. Next to each note, we are going to render an icon that indicates

the note’s status:

Copyright MiamiCoder.com Page 96

The red icon indicates that the note has not been synchronized, or that it was changed after it

was last synchronized. The green icon indicates that the note has been synchronized with the

server.

The perfect place to perform this modification is the renderNotesList function in the controller

module. Let’s modify this function as follows:

var renderNotesList = function () {

 var notesList = dataContext.getNotesList();
 var view = $(notesListSelector);

 view.empty();

 if (notesList.length === 0) {

 $(noNotesCachedMsg).appendTo(view);
 } else {

 var liArray = [],
 notesCount,

Copyright MiamiCoder.com Page 97

 note,
 dateGroup,
 noteDate,
 i,
 ul,
 liHtml,
 liIcon,
 lastUpdateDate,
 lastUploadDate;

 notesCount = notesList.length,
 ul = $("<ul id=\"notes-list\" data-role=\"listview\">").appendTo(view);

 for (i = 0; i < notesCount; i += 1) {

 note = notesList[i];

 noteDate = (new Date(note.dateCreated)).toDateString();

 // We will not render notes that are marked for deletion.
 if (!note.deleteAfterUpload) {

 if (dateGroup !== noteDate) {
 liArray.push("<li data-role=\"list-divider\">" + noteDate +
"");
 dateGroup = noteDate;
 }

 lastUpdateDate = new Date(note.lastUpdateDate).getTime();
 lastUploadDate = new Date(note.lastUploadDate).getTime();

 if (lastUpdateDate < lastUploadDate) {
 liIcon = "<img src=\"img/loop_green.png\" alt=\"Uploaded\"
class=\"ui-li-icon\">";
 } else {
 liIcon = "<img src=\"img/loop_red.png\" alt=\"Uploaded\"
class=\"ui-li-icon\">"; ;
 }

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + liIcon
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);
 }

 }

 var listItems = liArray.join("");
 if (listItems.length !== 0) {

Copyright MiamiCoder.com Page 98

 $(listItems).appendTo(ul);
 ul.listview();
 } else {
 view.empty();

 $(noNotesCachedMsg).appendTo(view);
 }
 }
};

Besides the three new variables - liIcon, lastUpdateDate and lastUploadDate - the lines we need

to pay attention to are the following:

// We will not render notes that are marked for deletion.
if (!note.deleteAfterUpload) {

 if (dateGroup !== noteDate) {
 liArray.push("<li data-role=\"list-divider\">" + noteDate + "");
 dateGroup = noteDate;
 }

 lastUpdateDate = new Date(note.lastUpdateDate).getTime();
 lastUploadDate = new Date(note.lastUploadDate).getTime();

 if (lastUpdateDate < lastUploadDate) {
 liIcon = "<img src=\"img/loop_green.png\" alt=\"Uploaded\" class=\"ui-li-
icon\">";
 } else {
 liIcon = "<img src=\"img/loop_red.png\" alt=\"Uploaded\" class=\"ui-li-
icon\">"; ;
 }

 liHtml = ""
 + "<a data-url=\"index.html#note-editor-page?noteId=" + note.id + "\"
href=\"index.html#note-editor-page?noteId=" + note.id + "\">"
 + liIcon
 + "<div class=\"list-item-title\">" + note.title + "</div>"
 + "<div class=\"list-item-narrative\">" + note.narrative + "</div>"
 + ""
 + ""

 liArray.push(liHtml);
}

After checking the deleteAfterDownload property of the note, and creating the list header with

the note’s date, we compare the last update date of the note to its last upload date. Depending on

the results of the comparison, we load the liIcon variable with an image template for the red or

green icon. Then, we add the icon to the list item’s template. Evidently, we will store the images

in the NotesApp/img directory, which we need to create.

Copyright MiamiCoder.com Page 99

The result of the modification is, of course, that notes that have never been uploaded, or have

been updated after being uploaded, will render with the red icon. Notes that have been uploaded

after being changed, will render with the green icon.

This concludes our workflow on the client side of the application. Now we can focus on the

server side.

As a detailed discussion of server-side code is out of the scope of this book, we are going to

create a very simple server-side handler that will receive the notes sent by the application, and

will send updated notes back to it.

Copyright MiamiCoder.com Page 100

In order to simulate what happens in a real-world application - for example, a database access

operation - we will introduce an artificial delay between the time the server receives the notes

and the time it sends the updated notes back to our jQuery Mobile page.

We are going to create two versions of this server-side handler. One using PHP, and one using

C#.

The Server-Side Code, PHP Version

We will call our handler notes.php:

The first thing we are going to do in it is create a class to represent a note:

<?php

// Class to represent a note.
class Note {
 function __construct($id, $dateCreated, $title, $narrative, $lastUpdateDate) {
 $this->id = $id;
 $this->dateCreated = $dateCreated;
 $this->title = $title;
 $this->narrative = $narrative;
 $this->lastUpdateDate = $lastUpdateDate;
 }
}

The Note class on the server is the equivalent of the NoteModel class on the client. We will see

how the server-side code will use instances of this class in a minute.

Next, we are going to create a class to represent the result of a note synchronization:

// Class to represent sync result.
class NoteSyncResult {

Copyright MiamiCoder.com Page 101

 function __construct($success, $isNewNote, $note) {
 $this->success = $success; // Used to let client know the
note it sent was synchronized.
 $this->isNewNote = $isNewNote; // Used to let client know this
a note created by another client.
 $this->note = $note;
 }
}

Our server handler will send a JSON-serialized instance of this class to the client for each note

that exists on the server. The success property tells the client application whether the note was

successfully synched on the server. The isNewNote property indicates whether the note is new,

which means that it was created by another client application and uploaded to the server. The

note property is a serialized instance of the note. This note may be new, or may already exist on

the client, but has been updated on the server.

Finally, let’s see how the handler processes the notes uploaded by the application, and uses

these two classes to build a response and send it back to the application.

First, we will define a couple of variables that will hold the uploaded notes and the payload that

we will send back to the application:

$notes = json_decode($_POST["notes"]);
$syncResults = array();

Notice how we need to decode the posted notes, as they are JSON-formatted.

Then, we are going to iterate through the uploaded notes. For each note, we create a

NoteSyncResult instance that will represent the result of our simulated synchronization:

foreach($notes as $key => $note) {

 $serverNote = new Note($note->id, $note->dateCreated, $note->title, $note-
>narrative, $note->lastUpdateDate);

// This note would be added to the server's database here. (We're not
discussing this subject in the book.)

 $syncResult = new NoteSyncResult(true, false, $serverNote);
 array_push($syncResults,$syncResult);
}

// New notes would be added to results here. (We're not discussing this subject in
the book.)

This is a simulated synchronization because we are not saving the uploaded notes, or comparing

Copyright MiamiCoder.com Page 102

them to an existing list of notes that we keep in a database. Although it’s out of the scope of this

book, it is not hard to see how this scenario could be implemented within a loop similar to the

one above.

In the loop, we create an instance of the Note class for each uploaded note, and an instance of

the NoteSyncResult class, which indicates that the synchronization was successful, and contains

the Note instance. We store the NoteSyncResult instance in the syncResults array.

Next, we serialize the syncResults array, and send it back to the client application:

// Artificial delay to simulate long-running op on the server.
sleep(3);

header('Cache-Control: no-cache, must-revalidate');
header("content-type:application/json");
echo(json_encode($syncResults));

Notice how we are introducing a delay of 3 seconds to simulate how a real-world server would

behave, where we would need to compare the uploaded notes to a list stored in a database, and

perform additions, updates or deletions in the database.

This is all it takes to create the PHP version of the server-side code against which we can test our

application. Remember that, in the application, we set the URL of the server handler through

the appServerUrl variable in the controller module. The value of the variable should be

notes.php.

Here’s the entire handler:

<?php

// Class to represent sync result.
class Note {
 function __construct($id, $dateCreated, $title, $narrative, $lastUpdateDate) {
 $this->id = $id;
 $this->dateCreated = $dateCreated;
 $this->title = $title;
 $this->narrative = $narrative;
 $this->lastUpdateDate = $lastUpdateDate;
 }
}

// Class to represent sync result.
class NoteSyncResult {
 function __construct($success, $isNewNote, $note) {
 $this->success = $success; // Use to let client know the
note it sent was synchronized.

Copyright MiamiCoder.com Page 103

 $this->isNewNote = $isNewNote; // Used to let client know this
a note created by another client.
 $this->note = $note;
 }
}

$notes = json_decode($_POST["notes"]);
$syncResults = array();

foreach($notes as $key => $note) {

 $serverNote = new Note($note->id, $note->dateCreated, $note->title, $note-
>narrative, $note->lastUpdateDate);

// This note would be added to the server's database here. (We're not
discussing this subject in the book.)

 $syncResult = new NoteSyncResult(true, false, $serverNote);
 array_push($syncResults,$syncResult);
}

// New notes would be added to results here. (We're not discussing this subject in
the book.)

// Artificial delay to simulate long-running op on the server.
sleep(3);

header('Cache-Control: no-cache, must-revalidate');
header("content-type:application/json");
echo(json_encode($syncResults));

If we run the application and upload some notes, we should see the icons in the Notes List page

switch from red to green:

Copyright MiamiCoder.com Page 104

We can also change the success or isNewNote properties of some of the NoteSyncResult class

instances we create in the PHP page. This allows us to simulate synchronization failures, or

sending new notes to the application.

If we simulate synchronization failures, we should see the icons remain red. If we send new

notes to the application, the notes should render in the Notes List page, and remain cached on

the device.

Copyright MiamiCoder.com Page 105

The Server-Side Code, C# Version

The C# version of the server-side code that will handle notes synchronization is very similar in

features to the PHP version. Let’s create the notes.aspx file that will serve as the server-side

handler, and the Note.cs file, which we will use to store a couple of helper classes:

In the notes.aspx.cs file, let’s add the following code:

namespace NotesApp
{
 public partial class notes : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 var notesJson = Request.Form["notes"];
 if (null != notesJson)
 {
 ServerNote[] notes =
JsonConvert.DeserializeObject<ServerNote[]>(notesJson) ;

 List<NoteSyncResult> results = new List<NoteSyncResult>();

 foreach (var note in notes)
 {

 ClientNote clientNote = new ClientNote()
 {
 id = note.Id,
 dateCreated = note.DateCreated,
 lastUpdateDate = note.LastUpdateDate,
 lastUploadDate = DateTime.Now,
 title = note.Title,
 narrative = note.Narrative
 };

Copyright MiamiCoder.com Page 106

 // This note would be added to the server's database here. (We're
not discussing this subject in the book.)

 // We are going to assume that everything went well and send each
note back to the client.
 NoteSyncResult result = new NoteSyncResult()
 {
 success = true,
 note = clientNote,
 isNewNote = false
 };

 results.Add(result);
 }

 // New notes would be added to results here. (We're not discussing
this subject in the book.)

 Thread.Sleep(3000); // Artificial delay to simulate long-running op
on the server.

 var serializedResults = JsonConvert.SerializeObject(results);
 Response.ContentType = "application/json";
 Response.Write(serializedResults);
 Response.End();
 }

 }
 }
}

The processing of the uploaded notes takes place in the Page_Load method, where we first

capture the uploaded notes and load them into an array of ServerNote instances. Observe that

we are using the JSON.NET library to deserialize the JSON-encoded list of notes uploaded by

the application.:

var notesJson = Request.Form["notes"];
if (null != notesJson)
{
 ServerNote[] notes = JsonConvert.DeserializeObject<ServerNote[]>(notesJson) ;

The ServerNote class is a server-side representation of a note. We will use instances of this class

to perform the synchronization of the notes sent by the application to the list stored on the

server. ServerNote resides in the Note.cs file, and this is its definition:

public class ServerNote
{
 public string Id { get; set; }
 public string Title { get; set; }

Copyright MiamiCoder.com Page 107

 public string Narrative { get; set; }
 public DateTime DateCreated { get; set; }
 public DateTime LastUpdateDate { get; set; }
 public DateTime LastUploadDate { get; set; }
}

After deserializing the uploaded notes, we define a list of NoteSyncResult instances, which we

will use to send the results of the synchronization back to the application:

List<NoteSyncResult> results = new List<NoteSyncResult>();

The NoteSyncResult class represents the result of a note synchronization. We will place it in the

Note.cs file as well:

public class NoteSyncResult
{
 public bool success {get;set;}
 public bool isNewNote { get; set; }
 public ClientNote note { get; set; }
}

The success property tells the client application whether the note was successfully synched on

the server. The isNewNote property indicates whether the note is new, which means that it was

created by another client application and uploaded to the server. The note property is a

serialized instance of the note. This note may be new, or may already exist on the client.

Back in the Page_Load function, we proceed to iterate over the array of notes sent by the

application:

foreach (var note in notes)
{

 ClientNote clientNote = new ClientNote()
 {
 id = note.Id,
 dateCreated = note.DateCreated,
 lastUpdateDate = note.LastUpdateDate,
 lastUploadDate = DateTime.Now,
 title = note.Title,
 narrative = note.Narrative
 };

 // This note would be added to the server's database here. (We're not discussing
this subject in the book.)

 // We are going to assume that everything went well, and send each note back to
the client.
 NoteSyncResult result = new NoteSyncResult()

Copyright MiamiCoder.com Page 108

 {
 success = true,
 note = clientNote,
 isNewNote = false
 };

 results.Add(result);
}

// New notes would be added to results here. (We're not discussing this subject in
the book.)

We will use the ClientNote class, which also resides in the Note.cs file, to send JSON-serialized

data to the application:

public class ClientNote
{
 public string id { get; set; }
 public string title { get; set; }
 public string narrative { get; set; }
 public DateTime dateCreated { get; set; }
 public DateTime lastUploadDate { get; set; }
 public DateTime lastUpdateDate { get; set; }
}

Back in the notes.aspx.cs page, in the loop, we create an instance of the ClientNote class for each

uploaded note, and an instance of the NoteSyncResult class, indicating that the synchronization

was successful. Each NoteSyncResult instance contains a Note class instance. After we finish

processing each note, we serialize the syncResults array and send it back to the client

application:

Thread.Sleep(3000); // Artificial delay to simulate long-running op on the server.
var serializedResults = JsonConvert.SerializeObject(results);
Response.ContentType = "application/json";
Response.Write(serializedResults);
Response.End();

Notice how we are introducing a 3-second delay to simulate how a real-world server would

behave, where we would need to compare the uploaded notes to a list stored in a database, and

perform additions, updates or deletions in the database.

This is all it takes to create the C# version of the server side code against which we can test our

application. Remember that, in the application, we set the URL of the server handler through

the appServerUrl variable in the controller module. The value of the variable should be

notes.aspx.

Copyright MiamiCoder.com Page 109

Where Are We?

In this chapter we modified our application so it is able to keep the notes saved on the device

synchronized with a server.

This process allowed us to learn how to add time stamps to the data model of a note, how to

create and handle the AJAX requests that allow communications with a server, and how to

modify the visual style of the items in a jQuery Mobile list view.

We Made It!

I hope this has been a fruitful journey for you. While creating the Notes Application, we became

familiar with the building blocks of a jQuery Mobile framework, and learned a number of

important practices such as how to craft beautiful user interfaces, create and style list views,

capture input using form elements, save data on the device, and synchronize data with a server.

This knowledge will definitely help you take the next steps in your path to becoming a great

mobile applications developer.

Keep in Touch

Your feedback is very important to me. Please send me your comments or questions through my

blog at http://miamicoder.com.

http://miamicoder.com/

	About The Book
	Goals
	Table of Contents
	About Warranties and Trademarks

	Chapter 1: Introducing the Notes Application
	What You Will Learn In this Book
	The Development Approach
	Features of the Notes App
	Designing the Notes List
	Designing the Note Editor
	Where Are We?

	Chapter 2: Creating the Notes List
	What You Will Learn In This Chapter
	The Application’s Directories and Files
	How jQuery Mobile Works
	The Notes List jQuery Mobile Page
	Defining the Controller Module
	How To Execute Code after A jQuery Mobile Page Loads
	Creating a jQuery Mobile List Programmatically
	Where Are We?

	Chapter 3: Retrieving and Rendering Cached Notes
	What You Will Learn In This Chapter
	Defining And Testing the Application’s Business Logic
	Getting Ready to Use Jasmine
	The dataContext Module
	The Note Model
	Retrieving Cached Notes from Local Storage
	Testing With Data by Retrieving a List of Dummy Notes
	Rendering Cached Notes
	How to Style List Items
	Grouping Notes By Date
	Where Are We?

	Chapter 4: Creating the Note Editor Page
	What You Will Learn In This Chapter
	Creating the Note Editor Page
	Loading a Note in the Editor
	Saving a Note
	Getting Ready to Validate a Data Model
	How to Create a Dialog With jQuery Mobile
	Creating a Confirmation Dialog
	Deleting a Note
	Using a Custom Theme Swatch in jQuery Mobile
	Where Are We?

	Chapter 5: Synchronizing With the Server
	What You Will Learn In This Chapter
	How Synchronization Will Work
	Creating a Tap Handler for the Sync Button
	Changing jQuery Mobile’s Default Loading Message
	Creating a Test for An Asynchronous Operation
	Passing a Server URL to the dataContext Module
	Beginning the Notes Synchronization
	Adding Synchronization Time Stamps to the Note Model
	Parsing Synchronization Results Sent By the Server
	Using an Icon to Indicate a Note’s Sync Status
	The Server-Side Code, PHP Version
	The Server-Side Code, C# Version
	Where Are We?
	We Made It!
	Keep in Touch

